Enrolment No.

## **GUJARAT TECHNOLOGICAL UNIVERSITY** ME – SEMESTER IV (OLD) – • EXAMINATION – SUMMER 2016

Subject Code: 741501

**Subject Name: Structural Optimization** 

Date:04/05/2016

## **Total Marks: 70**

- Instructions:
  - 1. Attempt all questions.

Time:10:30 am to 01:00 pm

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 Formulate the simply supported beam of length of 2.8 m for minimum weight subjected to deflection of beam should not exceed span/325. Density of PCC is 24  $kN/m^3$  and E = 17000 MPa. Also obtain the solution graphically for the problem, with the assumption that width of beam should not exceed 180mm.

| Q.2 | <b>(a)</b>  | Explain on "Objective function" and "Design Constraint".                                                                                                                                                        | 07 |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | <b>(b</b> ) | Explain Kuhn-Tucker conditions and elaborate its use.<br><b>OR</b>                                                                                                                                              | 07 |
|     | <b>(b</b> ) | -                                                                                                                                                                                                               | 07 |
| Q.3 | <b>(a)</b>  | Determine whether function given below is concave or convex or neither.<br>$f(X_1,X_2,X_3) = 2X_1^2 + 2X_2^2 + 4X_3^2 + 2X_1X_2 + 4X_2X_3$                                                                      | 07 |
|     | <b>(b)</b>  | What is constrained optimization problem? Explain with structural engineering. <b>OR</b>                                                                                                                        | 07 |
| Q.3 | (a)         | Using Lagrange's multiplier method,<br>Maximize $f(X) = 3X_1^2 + X_2^2 + 2X_1X_2 + 6X_1 + 2X_2$<br>subjected to $2X_1 - X_2 = 4$                                                                                | 07 |
|     | (b)         |                                                                                                                                                                                                                 | 07 |
| Q.4 |             | Use simplex method to maximize,<br>$P = 3x + 4y$ subject to: $x + y \le 4$ , $2x + y \le 5$ , $x \ge 0$ , $y \ge 0$<br><b>OR</b>                                                                                | 14 |
| Q.4 |             | Minimize the function using the simplex method<br>$Z = 3X_1 + 5X_2 + 4X_3 \text{ subjected to}$ $2X_1 + 3X_2 \le 8 \text{ and } 2X_2 + 5X_3 \le 10 \text{ and } 3X_1 + 2X_2 + 4X_3 \le 15, X_1, X_2, X_3 \ge 0$ | 14 |
| Q.5 |             | Formulate constraint equations & objective function for the figure 1, using plastic method. Obtain solution for minimum weight by graphical method. <b>OR</b>                                                   | 14 |
| 05  |             | Design the following pin jointed statically determinate truss structure for                                                                                                                                     | 14 |

Q.5 Design the following pin jointed statically determinate truss structure for 14 minimum weight (Refer figure 2). The horizontal and vertical deflections at joint D are both limited to 8.2 mm and the numerical value of stress in any member is limited to  $2.1 \times 10^6$  kN/m<sup>2</sup>. Use matrix force or displacement method.

\*\*\*\*\*

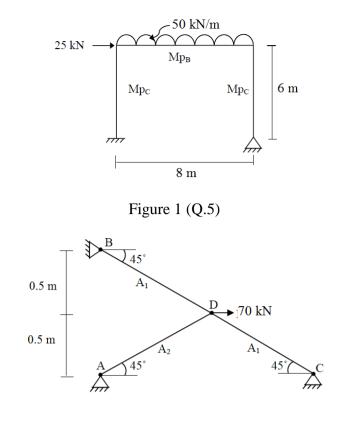



Figure 2 (OR Q. 5)