GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- II(Old course) • EXAMINATION (Remedial) - WINTER- 2015

Subject Code: 1720110 Date: 15/12/2015

Subject Name: Numerical Methods

Time:2:30 pm to 5:00 pm Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss the absolute and relative errors in numerical 07 computations and find the absolute and relative errors in computations of $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits.
 - (b) Find one root of $x^3 4x 8.95 = 0$ correct to three 07 decimal places using the method of Bisection.
- Q.2 (a) Fit the best equation of line y = a + bx for the following 07 data:

auta.				
x	0	2	5	7
у	-1	5	12	20

And hence find y at x = 5.

(b) Use Newton-Raphson method to find the real root near 2 of the equation $x^{\frac{1}{4}} - 11x + 8 = 0$ accurate to five decimal places.

OR

- (b) Using the method of False Position, find the real root of the order equation cos x 3x + 5 = 0 accurate to four decimal places.
- Q.3 (a) Solve the following equations by Gauss elimination 07 method:

$$x + 3y + 2z = 17, x + 2y + 3z = 16, 2x - y + 4z = 13.$$

(b) Using Lagrange interpolation formula find a polynomial which passes the points (0,-20), (1,-12), (3,-20), (4,-24).

OR

- Q.3 (a) Solve the following equations correct to three decimal 07 places by Gauss-Seidal method: x + 2y + z = 0, 3x + y z = 0, x y + 4z = 3.
 - (b) Find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ and also solve the system of equations AX = B, where AX = B where AX = B and AX = B where AX = B and AX = B and AX = B and AX = B and AX = B are AX = B and AX = B and AX = B are AX = B are AX = B and AX = B are AX = B are AX = B and AX = B
- Q.4 (a) Evaluate the integral $\int_0^{12} \frac{dx}{1+x^2}$, taking six intervals by using trapezoidal rule upto three significant figures.
 - (b) Evaluate the integral $\int_0^{1.2} e^x dx$, by using Simpson s 1/3 rule up to three significant figures.

		OR	
Q.4	(a)	Evaluate the integral $\int_2^6 log_{10} x dx$, taking six intervals by	07
Q.4	(b)	using trapezoidal rule upto three significant figures. Evaluate the integral $\int_0^1 \frac{dx}{1+x}$, by using Simpson $3/8$ rule.	07
Q.5	(a)	Apply Euler method to approximate the solution of the initial value problem with in the	07

- interval 2 < t < 2.5, using h = 0.1. **(b)** Use the Runge-Kutta method of order two with h = 0.1 on 0.7 (0,0.3) for the initial problem $\frac{dy}{dx} = \sin y$, y(0) = 1.
- Q.5 (a) Apply Modified Euler s method to approximate the solution of the initial value problem $\frac{dy}{dx} = 2xy, y(1) = 1 \text{ with in the interval } 1 < x < 1.5, \text{ using } h = 0.1.$
 - (b) Use the Runge-Kutta method of order four with h = 0.2 on (0,0.8) for the initial problem $\frac{dy}{dx} = \sqrt{x+y}$, y(0.4) = 0.41.
