GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- II(Old course) • EXAMINATION (Remedial) - WINTER- 2015

Subject Code: 1722001 Subject Name: Finite Element Method Time:2:30 pm to 5:00 pm Instructions:

Date: 09/12/2015

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Derive the load vector for two-noded bar element if it is loaded with 07 point load at centre and uniformly varying load along length.
 - (b) Derive the expressions for natural coordinates for a two-noded element 07 in terms of natural coordinate L_1 and L_2 , when range is 0 to 1.
- Q.2 (a) Using the theorem of minimum potential energy, derive expression for 07 element stiffness matrix K.
 - (b) What is tetrahedral element? What are the various shape functions for 07 the element? What will be *D* matrix for the same? Discuss the steps involved in the calculating the stiffness matrix for the same.

OR

- (b) Derive the expressions for natural coordinates for a two noded element 07 in terms of natural coordinate *s*, when range is -1 to 1.
- Q.3 (a) Distinguish between a plane stress and plane strain problem with 07 suitable examples. Also give their strain stress linking matrices.
 - (b) Determine nodal displacements and reaction forces for bar subjected to 07 torque shown in Figure 1 using FEM.

OR

- Q.3 (a) For a constant strain triangle element the three nodes are (0,0), (2,0) 07 and (0,3), derive the strain displacement relationship matrix **B**.
 - (b) Discuss the use of Pascaløs triangle for selection of the displacement 07 function. Also give the various examples for the same giving convergence criteria.
- Q.4 (a) Define axi-symmetric problem. Discuss type of stresses and strains 07 induced in axi-symmetric element.
 - (b) Derive strain displacement matrix for axymmetric element shown in 07 Figure 2. Take E=210GPa, = 0.3.

OR

- Q.4 (a) Write short note on pre and post processors.
 (b) For the beam and loading as shown in Figure 3, where E=210 GPa and 07 I = 2.0 x 10⁶ m⁴. Determine slope at B and C.
- Q.5 Assemble Jacobian matrix and strain displacement matrix 14 corresponding to the Gauss point (0.57735, 0.57735) for the element shown in Figure 4. Also describe how to assemble element stiffness matrix.

OR

Q.5 (a) Enlist five commercially available finite element analysis packages and 07

list the desirable features of those packages.

(b) Write short note on Hermite Polynomialø

2/2