GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- II(Old course) • EXAMINATION (Remedial) - WINTER- 2015

	•	t Code: 1722 Name: Desi	101 gn of Heat Exchange Equip	Date: 09/12/201	5	
Ti	-	:30 pm to 5:0		Total Marks: 7	0	
	2.		uestions. e assumptions wherever necessary. e right indicate full marks.			
Q.1	(a)		the two fluids undergoes phase		07	
	(b)		n counter flow heat exchanger usine exchangers according to flow type	0	07	
Q.2	(a)	Explain how the the the the text of te	ne charts provided by Kays and L	ondon are useful in the design of	07	
	(b)	Ũ	in the basic principles of heat tran OR	sfer in detail.	07	
	(b)	2. In the	s to liquid heat exchanger, why are definition of effectiveness, expla C_{min}) is used for the maximum point.	in why minimum heat capacity	07	
Q.3	(a) (b)		ethod of Plate heat exchanger designed and frame heat exchangerøand for OR		07 07	
Q.3	(a)	Explain giving exchangers	precious reason why fouling fluid	ls are not used in compact heat	07	
	(b)	Explain doubl	e pipe heat exchanger and derir quivalent diameter for hairpin hea	- ·	07	
Q.4	(a)	Explain variou tube heat exch	us -TEMA-Standardø available fo	or shell designs in the shell and	07	
	(b)	Distilled water exchanger at 3 water coming exchanger for and I.D. is 19 Maximum len limitations. As tube is to be 2 exchanger usi	istilled water with a flow rate of 50 kg/s enters a baffled shell and tube heat changer at 32 C and leaves at 25 C. Heat will be transferred to 150 kg/s of raw ater coming from a supply at 20 C. You are informed to design the heat changer for this purpose. A single shell and tube is preferable. The tube O.D. d I.D. is 19 mm and 16 mm. Tubes are laid out on 2.54 cm square pitch. aximum length of the heat exchanger is 8 m is required because of space nitations. Assume $K_{tube} = 42.3$ W/m K and maximum flow velocity through the be is to be 2 m/s to prevent erosion. Also perform thermal analysis of the heat changer using Bell-Delaware method using correction factor of 60%. The llowing correlations and properties may be used;			
		(kg/m ³)	Tube side fluid 998.2	Shell side fluid 995.9		
		$\mu (Ns/m^2)$	10.02×10 ⁻⁴	8.15×10 ⁻⁴		
		$\frac{\mu (W/m)}{k (W/m.K)}$	0.598	0.612		
		$c_p(J/kg.K)$	4182	4179		

7.01

Pr

5.75

	Tube side fluid	Shell side fluid
Corelations used	$Nu_{b} = \frac{(f/2) \operatorname{Re}_{b} \operatorname{Pr}_{b}}{1.07 + 12.7 (f/2)^{1/2} (\operatorname{Pr}_{b}^{1/2} - 1)}$	$h_{id} = j_i c_p \left(\frac{\dot{m}_s}{A_s}\right) \left(\frac{k_s}{c_p \mu_s}\right)^{2/3}$
	$f = (158 \ln \mathrm{Re}_b - 3.28)^{-2}$	$j_i = 0.185 \mathrm{Re}_s^{-0.324}$

OR

- **Q.4** (a) Name and explain the various leakages and bypass streams taken in to account in 07 determination of shell side heat transfer coefficient and pressure drop in Bell-Delaware method.
 - (b) A shell and tube condenser of a large steam power plant consisting of a single 07 shell and 30,000 tubes, each executing two passes. The tubes are of thin wall construction with 25 mm diameter and steam condenses on their outer surface with an associated convection coefficient of 11,000 W/m².K. The heat transfer rate that must be affected by the exchanger is 2×10^9 W, and this is accomplished by passing cooling water through the tubes at a rate of 3×10^4 kg/s. The water enters at 20 °C, while the steam condenses at 50 °C. What is the temperature of the cooling water emerging from the condenser? What is the required tube length L per pass? Take properties of water are: $= 997 \text{ kg/m}^3$, C_p = $\hat{4}179 \text{ J/kg}$, $\mu = \hat{8}55 \times \hat{10}^{-6} \text{ N.s/m}^2$, $k = \hat{0}.\hat{6}\hat{1}3 \text{ W/m.K}$, Pr = 5.83. Use an internal flow correlation as $Nu_D = 0.023 \operatorname{Re}_D^{4/5} \operatorname{Pr}^{0.4}$

State design and operational considerations while selecting of condensers. **Q.5 (a)**

(b) A double pipe heat exchanger is used to condense steam at a rate of 120 kg/h at 07 45 °C. Seawater enters through the inner tube at a rate of 1.2 kg/s at 15 °C. The tube with 25.4 mm O.D. and 22.1 mm I.D. is made of mild steel, k = 45 W/m.K. The heat transfer coefficient on the steam side, h_o is 7000 W/m²K Calculate the overall heat transfer coefficient under clean and fouled conditions. $C_p = 4.18$ kJ/kg K for water and $h_{fg} = 2392$ kJ/kg. At the mean temperature the properties of water are = 997.207 kg/m³, k = 0.605 W/m K, μ = 9.09×10⁻⁴ Pa.s and Pr =6.29, Fouling factor for sea water and condensate are 0.088 m^2 K/kW. Use following correlation for inside of tube;

$$Nu_{b} = \frac{(f/2)(\text{Re}_{b} - 1000)\text{Pr}_{b}}{1 + 2.7(f/2)^{1/2}(\text{Pr}_{b}^{-2/3} - 1)}$$
$$f = (1.58 \ln \text{Re} - 3.28)^{-2}$$

OR

- Q.5 State design considerations for a coal based furnace. **(a)**
 - Water at a flow rate of 5000 kg/h will be heated from 20 to 35 °C by hot water at (b) 140 °C. A 15 °C hot water temperature drop is allowed. A number of 3.5 m long hairpins of I.D. = 0.0779 m by I.D. = 0.0525 m and O.D. = 0.0603 m double pipe heat exchangers with annuli and pipes each connected in series will be used. Hot water flows through the inner tube. Inside and outside fouling factors are $0.000176 \text{ m}^2\text{K/W}$ and $0.000352 \text{ m}^2\text{ K/W}$. Assume that the pipe is made of carbon steel (k = 54 W/m K). The heat exchanger is insulated against heat losses. Calculate the number of hairpins. Take properties of hot and cold water in a following manner:

	Hot water	Cold water
(kg/m^3)	932.53	996.4
μ (Pa.s)	0.207×10 ⁻³	0.841×10 ⁻³
k (W/m.K)	0.687	0.609
c _p (kJ/kg.K)	4.268	4.179

07

07

07

2

Pr	1.28	5.77		
	$f = (1.58 \ln \text{Re} - 3.28)^{-2}$	$f = (3.64 \log_{10} \text{Re} - 3.28)^{-2}$		
Use : $Nu_b = \frac{(f/2)\operatorname{Re}_b\operatorname{Pr}_b}{1+8.7(f/2)^{1/2}(\operatorname{Pr}_b-1)}$ for both fluids				
