Seat No.:	Enrolment No.
Deat 110	Lindinent 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- II(Old course) • EXAMINATION (Remedial) - WINTER- 2015

Subject Code: 1724502 Date: 10/12/2015

Subject Name: Power Electronics – II

Time: 02:30 PM - 05:00 PM **Total Marks: 70**

Instructions:

1. Attempt all the questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Notations and symbols used have usual technical meaning.
- Q.1 (a) In a 1-phase diode-bridge rectifier; a large capacitor is connected across 07 the resistive load in order to minimize the ripple in the DC-link voltage. Assume utility voltage as sinusoidal. Draw the following waveforms and comment on distortion in supply current:
 - (i) Waveform-1: Output voltage and output current
 - (ii) Waveform-2: Supply voltage, supply current, fundamental frequency component of supply current
 - (b) Neatly draw the output current (I_O) waveform of a 1-phase inverter from 07 the description tabulated below. Calculate: (i) RMS output current I_{O(RMS)} and (ii) Fundamental frequency component of output current I_{O1(RMS)}.

Determine only %THD of the output current waveform using $I_{O(RMS)}$ and $I_{O1(RMS)}$.

Positive half-cycle of output current (I₀) waveform:

θ (degree)	0	0	45	45	135	135	180	180
$I_{O}\left(A\right)$	0	5	5	10	10	5	5	0

Negative half-cycle of output current (I_O) waveform:

θ (degree)	180	180	225	225	315	315	360	360
Io (A)	0	-5	-5	-10	-10	-5	-5	0

- **Q.2** (a) (i) What are the features of multilevel inverter?
 - 04 (ii) Draw any one leg of an NPC 5-level inverter. Explain various alternatives (switching states) which are possible to generate each of the voltage levels: $V_{AO} = -V_{dc}/4$, $V_{AO} = V_{dc}/4$, $V_{AO} = -V_{dc}/2$, $V_{AO} =$ $V_{dc}/2$ and $V_{AO} = 0$. Tabulate these alternatives for each voltage level by showing the states (either $\div ON\emptyset$ or $\div OFF\emptyset$) of all the switches of the Pole-A.
 - **(b)** Explain SEPIC converter and its operating modes with neat diagrams. What are the applications and drawbacks of SEPIC? Comment on the factors affecting the reliability and efficiency of SEPIC.

- (b) What is Displacement Power Factor (DPF)? Derive the relationship 07 between PF, DPF and %THD of a distorted supply current produced due to 1-phase diode-bridge rectifier as front-end converter having shunt capacitor filter across the resistive load.
- Q.3 (a) Explain 1-phase boost converter based active PFC with neat diagram and 07 waveforms.
 - **(b)** Draw only the circuit diagram of a Class-E resonant inverter. It is having 07

supply voltage = 48V, load = $40\acute{a}$, switching frequency = 20kHz and Q-factor = 6. Determine the optimum values of input inductor, input capacitor, resonance inductor and resonance capacitor.

OR

Q.3	(a) (b)	Explain resonant DC-link inverter with neat diagram and waveforms. An L-type ZCS resonant converter delivers a maximum power of $P_L = 1kW$ at $Vo = 5V$. Supply voltage $Vs = 12V$. Maximum operating frequency $f_{max} = 50kHz$. Determine the values of input inductor and input capacitor. Assume the intervals t_1 and t_3 are very small and $x = Im/Io = 1.5$.	07 07					
Q.4	(a) (b)	Explain all the possible switching states in 7-level H-bridge inverter. Explain the use of 1-phase PFCs for 3-phase applications.	07 07					
		OR						
Q.4	(a)	Explain the principle of operation of a 5-level diode clamped multilevel 07 inverter with neat circuit diagram.						
	(b)	Explain ZVS resonant converter with neat diagram and waveforms.	07					
Q.5	(a)	Explain 3-phase to 3-phase matrix converter.	07					
	(b)	Explain 1-phase buck-boost converter based active PFC with neat diagram and waveforms.	07					
		OR						
Q.5	(a)	Briefly explain the steps for designing a high frequency transformer.	07					
	(b)	Explain 6-pulse converter with neat diagram and waveforms.	07					
