Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-I(New course)• EXAMINATION – WINTER- 2015

			/12/2015	
Subject Name: Optimization techniques for Engineers Time:2:30 pm to 5:00 pm Total Mar Instructions:			70	
 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 				
Q.1		Explain Genetic Algorithm and its implementation in detail with suitable example	14	
Q.2	(a) (b)	Discuss Hooke & Jeeves method of optimization with necessary derivations. Minimize following function using Golden section search method (Two iterations). $f(x) = x^2 + \frac{54}{x}$ OR	07 07	
	(b)	Minimize following function using successive quadratic estimation method. (Two iterations). $f(x) = x^2 + \frac{54}{x}$	07	
Q.3		Minimize following function using Univariate method. (Three iterations). $f(x1,x2) = x1 - x2 + 2x1^2 + 2x1x2 + x2^2$, where initial $X^1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	14	
Q.3		OR Minimize following function using Powelløs method. (Three iterations). $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1^2 + x_2^2 - 7)^2$, where initial $X^0 - \begin{bmatrix} 0\\4 \end{bmatrix}$	14	
Q.4		Maximize following function with Big-M method. Max(Z)= $x1+2x2+3x3-x4$, Subject to: X1+2x2+3x3=15; 2x1+x2+5x3=20; x1+2x2+x3+x4=10; x1,x2,x3,x4×0.	14	
Q.4		OR Find the maximum of Z=6X+8Y by solving it α s dual problem. Subject to , 5X+2Y \ddot{O} 20; X+2Y×10; X,Y×0.	14	
Q.5		Minimize following function using Generalised Reduced Gradient Algorithm. (two iterations). $f(x1,x2) = (x1^2 + x2 - 11)^2 + (x1 + x2^2 - 7)^2$, Subject to: $g1(X) = 26 - (x1 - 5)^2 - x2^2 \ge 0$; $g2(X) = 20 - 4x1 - x2 \times 0$; $x1,x2 \times 0$	14	
Q.5	(a)	OR Minimize following function using Rosenbrock α s method. (two iterations).	07	
	(b)	$f(x1,x2) = x1 - x2 + 2x1^{2} + 2x1x2 + x2^{2},$ Minimize following function using Fletcher Reevøs conjugate Gradient method. (two iterations). $f(x1,x2) = x1 - x2 + 2x1^{2} + 2x1x2 + x2^{2}$	07	
