GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER–I(New course)• EXAMINATION – WINTER- 2015

Subject Code: 2710710 Date: 31/12/2015 Subject Name: Applied Linear Algebra Time:2:30 pm to 5:00 pm Total Marks: 70 Instructions:

- **1. Attempt all questions.**
- **2. Make suitable assumptions wherever necessary.**
- 3. **Figures to the right indicate full marks.**
- **Q.1 (a)** Determine the dimension of and a basis for the solution space of the system **07**

$$
3x_1 + x_2 + x_3 + x_4 = 0
$$

$$
5x_1 - x_2 + x_3 - x_4 = 0
$$

- **(b)** (i) Is the vector $(3, -1, 0, -1)$ in the subspace of R^4 spanned by the vectors $(2,-1,3, 2), (-1,1,1,-3)$ and $(1,1,9,-5)$? **03**
	- (ii) Check whether the following set of vectors in P_2 are linearly independent : 2 3 $p_1 = 1 - x$, $p_2 = 5 + 3x - 2x^2$, $p_3 = 1 + 3x - x$ **04**
- **Q.2** (a) Let F be a subfield of the complex numbers and let T be the function from F^3 into F^3 defined by $T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$ **07**
	- (i) Verify that T is a linear transformation.
	- (ii) If (a,b,c) is a vector in F^3 , what are the conditions on a,b and c that the vector be in the range of *T* ? What is the rank of *T* ?
	- (iii) What are the conditions on a,b and c that (a,b,c) be in the null space of T? What is the nullity of *T* ?
	- **(b)** (i) Let *T* and *U* be the linear operators on R^2 defined by $T(x_1, x_2) = (x_2, x_1)$ and $U(x_1, x_2) = (x_1, 0)$. Find the transformations $(U + T)$, UT and U^2 . Also describe them geometrically. **03**
		- (ii) Let V be the set of pairs (x, y) of real numbers and let F be the field of real numbers. Define $(x, y) + (x_1, y_1) = (x + x_1, 0)$ $c(x, y) = (cx, 0)$ **04**

Is *V* , with these operations, a vector space?

OR

- **(b)** State and prove rank nullity theorem. **07**
- **Q.3** (a) Let T be the linear operator on R^3 which is represented in the standard ordered basis by the matrix **07**

$$
\begin{bmatrix} -9 & 4 & 4 \ -8 & 3 & 4 \ -16 & 8 & 7 \end{bmatrix}
$$

Prove that T is diagonalizable by exhibiting a basis for R^3 , each vector of which is a characteristic vector of *T* .

- **(b)** Let *L* be a linear transformation on R^4 defined by $L[x, y, z, u] = [x + y, x - y, z + 2u, 2z - u]$
	- (i) Show that the subspace S generated by $\{(a, b, 0, 0) : a, b \in \mathbb{R}\}\)$ and the subspace S' generated by $\{ (0, 0, c, d) : c, d \in \mathbb{R} \}$ are L - invariant.
	- (ii) Determine the matrix of L with respect to the standard basis of R^4 .

OR

Q.3 (a) Let T be the linear operator on R^3 which is represented in the standard ordered basis by the matrix **07**

Find the minimal polynomial for the matrix.

- **(b)** (i) Let $f(x) = x^2 + 3x + 2 + a$, where *a* is a real number, $d(x) = x + 1$ and $\overline{}$ J $\overline{}$ \mathbf{r} L $=$ 1 0 1 2 $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$. Find the quotient $q(A)$ and the remainder $r(A)$ on dividing $f(A)$ by $d(A)$. **03** (ii) Find A^{30} if $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ $\overline{}$ $\overline{}$ \mathbf{r} L $=$ 2 2 1 3 *A* **04**
- **Q.4** (a) (i) Find $||u||$ and $d(u, v)$, where $u = (2, -1)$, $v = (-1, 1)$ are in R^2 with the inner product defined as $\langle u, v \rangle = 2u_1v_1 - u_1v_2 - u_2v_1 + u_2v_2$. **03**

(ii) Show that $\langle a, b \rangle = a_1b_1 + a_2b_3 + a_3b_2 + a_4b_4$ is not an inner product on M_{22} , where $A = \begin{bmatrix} a_1 & a_2 \\ a_2 & a_1 \end{bmatrix}$, $B = \begin{bmatrix} a_1 & a_2 \\ b_2 & b_1 \end{bmatrix}$ $\overline{}$ I L \mathbf{r} $\Big\vert \, , \quad B =$ J $\overline{}$ \mathbf{r} L \mathbf{r} $=$ $3 \nu_4$ v_1 v_2 3 \mathbf{u}_4 $\begin{bmatrix} 1 & u_2 \end{bmatrix}$ $b₃$ *b* b_1 *b B* a_3 *a* $a₁$ *a A* **04**

(b) Apply the Gram–Schmidt process to the vectors $u_1 = (1, 0, 1), u_2 = (-1, 1, 0), u_3 = (-3, 2, 0)$, to obtain an orthonormal bases for $R³$ with the standard inner product. **07**

OR

- **Q.4** (a) Let S_1 , S_2 and S_3 be the subspaces of R^3 generated by $S_1 = \{(a,b,c) \mid a+2b-c=0\}, S_2 = \{(a,b,c) \mid b=c\}$ and $S_3 = \{(a,b,c) \mid a-2c = 0, b+4c = 0\}$ Determine (i) basis for $S_2 \cap S_3$ and (ii) the dimension of $S_1 + S_2$ **07**
	- **(b)** Determine Smith canonical form of the following λ matrix : $\overline{}$ L \mathbf{r} L \mathbf{r} -2λ λ^2 + $-\lambda$ \overline{a} $=$ λ^2 $\lambda^2 - 2\lambda$ $\lambda^2 + 7\lambda$ λ $-\lambda$ -2λ λ^2 $\lambda^2 - 2\lambda$ 8 λ $\lambda^{\scriptscriptstyle \top}$ 2 λ $\lambda^2 + 7$ 2 2λ 8 (λ) 2 2^2 2^2 2^2 2 2^2 *A* **07**

 $\overline{}$

L

2

07

Q.5 (a) (i) Show that $\overline{}$ $\overline{}$ $\overline{}$ \rfloor $\overline{}$ \mathbf{r} \mathbf{r} \mathbf{r} L \mathbf{r} \overline{a} \overline{a} $=$ 0 0 2 2 $-\sqrt{2}$ 0 2 $-i\sqrt{2}$ 0 2 $\frac{1}{2}$ *i i* $A = \frac{1}{2} \begin{vmatrix} i\sqrt{2} & -\sqrt{2} & 0 \end{vmatrix}$ is unitary.

> (ii) Let the vector space be C^2 , with the standard inner product. Let T be the linear operator defined by $T \varepsilon_1 = (1, -2), T \varepsilon_2 = (i, -1)$. If $\alpha = (x_1, x_2)$, find T $^*\alpha$. **04**

(b) Solve the following system of linear equations by Cholesky's method:
\n
$$
4x + 2y + 14z = 14
$$
\n
$$
2x + 17y - 5z = -101
$$
\n
$$
14x - 5y + 83z = 155
$$

OR

Q.5 (a) Obtain the least squares solution of $AX = b$ and also the orthogonal projection of *b* on the column space of *A* where **07**

$$
A = \begin{bmatrix} 1 & 2 \\ -1 & -5 \\ 1 & 5 \\ -1 & -2 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 12 \\ -6 \\ 6 \end{bmatrix}
$$

(b) Using Jacobi's method, compute all the eigen values and the corresponding eigen vectors of the matrix **07**

$$
A = \begin{bmatrix} 2 & \sqrt{2} & 4 \\ \sqrt{2} & 6 & \sqrt{2} \\ 4 & \sqrt{2} & 2 \end{bmatrix}
$$

$$
f_{\rm{max}}
$$

03