GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-I(New course)• EXAMINATION – WINTER- 2015

Subject Code: 2710711Date: 01/01/2016Subject Name: COMPUTER METHODS IN POWER SYSTEM ANALYSISTime: 2:30 pm to 5:00 pmInstructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Describe Fast Decoupled Load Flow Algorithm with Flow chart. Briefly explain the Linear Programming Methods for Optimal Power Flow.	07 07
Q.2	(a)	Describe the computational procedure for gradient method of Optimal Power Flow.	07
	(b)	Describe the NR algorithm for power flow analysis.	07
	(b)	OR Derive the equation for Y_{BUS} in terms of the incidence matrix 'A' and primitive admittance matrix 'y' from first principles.	07
Q.3	(a) (b)	Describe the contigency analysis procedure with appropriate flow chart. Discuss the linear sensitivity factor.	07 07
Q.3	(a)	OR Define the overload performance index. How is it useful to contigency selection?	07
	(b)	Explain technique proposed by Zaborsky for security analysis in power system	07
Q.4	(a) (b)	Describe the orthogonal decomposition algorithm for state estimation. Explain the procedure for detection & indentification of bad measurements in relation to state estimation.	07 07
		OR	
Q.4	(a) (b)	Derive the equaitons to solve the AC state estimation problem. Explain the network observability and pseudo measurements in relation to state estimation.	07 07
Q.5	(a) (b)	Explain the Forward Euler method with suitable example. Describe the Runge-Kutta methods for solution of non linear equations.	07 07
		OR	
Q.5	(a)	Compare DC power flow with AC power flow. Explain DC power flow in relation with Power electronics applications.	07
	(b)	Explain Single step methods, Multi step methods, Explicit methods and Implicit methods of numerical integration.	07
