GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-I(New course) • EXAMINATION - WINTER- 2015

Subject Code: 2710802 **Subject Name: Computer Aided Design** Time:2:30 pm to 5:00 pm

Total Marks: 70

Date: 01/01/2016

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 07 Q-1 Derive the equation of an ellipse whose major axis is inclined with an angle α (a) relative to the X-axis and ellipse with center P_c (x_c , y_c , z_c) and the lengths of half of major and minor axes are A and B respectively.
 - Mention the advantages of Bresenham's algorithm over DDA algorithm. Use 07 **(b)** Bresenham's line algorithm to rasterize a line from A(0, 0) to B(7, 6).
- **Q.2** Draw a neat sketch and obtain parametric representation of a straight line with 07 (a) two end points P_1 , P_2 . Represent the line with end point coordinates P_1 (2, 0, 3) to P_2 (9, 0, 13) in parametric analytic form.
 - **(b)** Compare conventional and computer aided design processes. Enlist various 07 applications of CAD.

OR

- Draw a diagram of a typical product life cycles. List various CAD/CAM tools **(b)** 07 used at each stage of design and manufacturing phase of product life cycle.
- Write an equation of Bezier's curve with four control points. The coordinates Q.3 07 **(a)** of four control points relative to a current WCS are given by: $P_0 = [3 \ 2 \ 0], P_1 = [3 \ 3 \ 0], P_2 = [2 \ 3 \ 0]$ and $P_3 = [2 \ 2 \ 0]$. Find the equation of the resulting Bezier curve. Also find points on the curve for u=0, 0.25, 0.5, 0.75 and 1.
 - Explain and obtain the matrices for following orthographic projections as **(b)** 07 shown for figure 1,
 - (i) Front view (ii) Top view

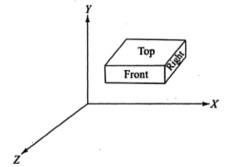


Figure 1 Model views relative to its MCS

OR

- Derive the equation of Hermite's cubic spline and represent in matrix form. 07 Q.3 (a) Also write properties of this synthetic curve.
 - Derive a matrix of a perspective projection onto the $z_v=0$ plane when the centre 07 **(b)** of projection is placed on the z_v axis at a distance d from the origin with a neat sketch.

- Q.4 (a) Generate the conical surface obtained by rotation of the line segment AB 07 around the z-axis with, A= (2, 0, 2) and B = (8, 0, 8). Also find coordinates of a point on a surface at u=0.4 and $\phi = \pi/2$ radians.
 - (b) What is a basic difference between ruled surface and coons surface (coons **07** patch)? Write an equations for coons patch with neat sketch.

OR

- **Q.4** (a) A cubic Bezier curve is defined by the control points: $P_0 = [1,0,2]$, $P_1 = [3,0,4]$, **07** $P_2 = [2,0,6]$, $P_3 = [5,0,7]$. Find the surface of revolution obtained by revolving the curve about the z-axis and calculate the point on the surface at u = 0.25, $\phi = \pi/6$ radians.
 - (b) Differentiate between implicit and explicit surfaces. Mention various types of surfaces. Explain any one surface in detail.
- Q.5 (a) Explain boundary representations in detail. Compare boundary representations 07 (B-rep) with Constructive Solid Geometry (CSG).
 - (b) Formulate the equation of the surface area A_s of a bounded surface in form of $v_2 u_2$

$$A_{s} = \int_{v_{1}}^{z} \int_{u_{1}}^{z} \sqrt{(P_{u} \cdot P_{u})(P_{v} \cdot P_{v})} du dv$$

OR

- Q.5 (a) List various data exchange formats. Explain IGES data representations and its 07 structure.
 - (b) Formulate curve length as a geometric property between two end points. 07
