GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-I(New course)• EXAMINATION – WINTER- 2015

	Subject Code: 2711103Date: 02/01/2Subject Name: Advanced Fluid MechanicsTotal Marks:Time: 2:30 pm to 5:00 pmTotal Marks:Instructions:Total Marks:		
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Differentiate between :1. Eulerian and Langrangian methods for representing fluid flow.2. Pathlines, Streamlines and Streaklines.	07
	(b)	Define: (i) convective and local accelerations. (ii) tangential and normal accelerations (iii) Circulation	02+02 +01=07
Q.2	(a)	If the flow of an incompressible fluid is axially symmetric, develop the continuity equation using cylindrical coordinates.	07
	(b)	In 3-D incompressible fluid flow, the velocity components in x and y directions	07
		are: $2 + 2 + 3 = (- + - + -)$	
		$u = x^2 + y^2 z^3$; $v = -(xy + yz + zx)$ Use continuity equation to evaluate an expression for the velocity components w in the z direction	
		expression for the velocity components w in the z-direction. OR	
	(b)	If the velocity field is given by $u = (16y - 8x)$; $v = (8y - 7x)$ find the circulation	07
		around the closed curve defined by $x = 4$, $y = 2$, $x = 8$, $y = 8$.	
Q.3	(a)	Derive Bernoulli's equation for steady flow by integrating Euler's equation of motion.	07
	(b)	In the two-dimensional incompressible flow field the velocity components are v^3	07
		$u = 2x - x^2y + \frac{y^3}{3}; v = xy^2 - 2y - \frac{x^3}{3}$	
		expressed as: $3 \qquad 3$ (i) Determine the velocity and acceleration at point L (x = 1 m, y = 3 m).	
		(i) Determine the velocity and determinent if point D (n = 1 m, y = 5 m).(ii) Is the flow possible? If so obtain an expression for the stream function.	
		(iii) What is the discharge between streamlines passing through $(1, 3)$ and $(2, 3)$?	
		(iv) Is the flow irrotational? If so determine the corresponding velocity potential.(v) Show that each of the stream and potential functions satisfy Laplace equation	
		equation. OR	
Q.3	(a)	Derive the Navier-Stokes equation for viscous compressible fluid with constant	07
		viscosity: $\rho \frac{D\overline{q}}{Dt} = \rho \overline{X} - \nabla p + \mu \nabla^2 \overline{q} + \frac{\mu}{3} \nabla (\nabla \overline{q})$	
	(\mathbf{L})		07

(b) Discuss Principle of Superposition.

- Q.4 (a) Differentiate between Creeping flows and Nonviscous Flows.
 - (b) For laminar flow over a flat plate, a reasonable assumption for the velocity profile **07** is polynomial in y: $u = a + by + cy^2$, Derive the expression for boundary layer thickness, δ and skin friction coefficient, C_f in terms of local Reynolds number.

07

07

		OR	
Q.4	(a)	Write a short note on Prandtl's Mixing Length theory	07
	(b)	Discuss in brief boundary layer stability and transition	07
Q.5	(a)	Describe compressible flow through a convergent-divergent nozzle. How and where does the shock wave occur in the nozzle?	07
	(b)	Define the following terms:	07
		(i) Subsonic flow (ii) Sonic flow (iii) Supersonic flow (iv) Mach cone	
		(v) Stagnation pressure (vi) silence zone (vii) shock strength.	
		OR	
Q.5	(a)	Define maximum velocity and critical velocity of sound. Establish relation between	07
		them.	
	(b)	Define Impulse function and derive its non-dimensional form for isentropic flow.	07
