OR

Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-I(New course) • EXAMINATION - WINTER- 2015

Subject Code: 2711601 **Subject Name:** Advanced Thermodynamics

Instructions:

Time:2:30 pm to 5:00 pm

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- What are equilibrium conversion charts? Elaborate the procedure for **Q-1(a)** (07) obtaining equilibrium conversion chart. Depict and discuss generalized nature of these charts for reaction of type $A \rightarrow B+C$ being exothermic in nature and occurring under different sets of conditions.
 - **(b)** Production methanol proceeds as follows:-(07) $CO + 2H_2 \rightarrow CH_3OH.$

The reaction under consideration is carried out at temperature (t) = 390 °C and pressure (p) = 300 atm. The value of ratio's of activity coefficients ($K\gamma$) is 0.434 and the value of free energy change for reaction at 663.2 K is + 14,700 cal/gmol. Show that the values of yield of methanol and equilibrium conversion are 21% and 45% respectively.

- Explain calculations of equilibrium conversion values under isothermal Q-2(a) (07) conditions for the following two reactions proceeding simultaneously: $A \rightarrow B+C \& A \rightarrow D+E$. Derive relevant equations for equilibrium constant (K) as a function of P, n_t & x_e . Also briefly decribe stepwise procedure for calculation of values of xe when both reactions proceed simultaneously.
 - **(b)** Starting from first principals, derive an expression for Heat of Reaction for a (07) $a \cdot A + b \cdot B \neq c \cdot C + d \cdot D$ occurring reaction of type at anv temperature (T) and any pressure (p) under non-ideal conditions.

OR

- Describe with the help of appropriate data & equations and relevant graphs, (07) **(b)** the calculation of equilibrium conversion under adiabatic conditions for a reaction of type $A \rightarrow B$ being highly reversible and **endothermic in nature.**
- Q-3 (a) Starting from first principles, derive an equation $\Delta G^{\circ} = -RT \ln K$ wherein (07) all the symbols used have conventional meaning.
- Explain the adiabatic flash calculations with block diagram and supporting (07) **(b)** equations.

Date: 01/01/2016

Enrolment No.

Total Marks: 70

1

Q-3(a)

$$A \rightarrow B$$

Where A and B are miscible liquids for which

 $G^{\rm E}/RT = 0.1 x_{\rm A} x_{\rm B}$

If $\Delta G^{\circ}_{298} = -1000$ kJ/kmol what is the equilibrium composition of mixture at 25° C? How much error is introduced if one assumes that A and B form an ideal solution?

(b) A feed stock of n – butane is cracked at 750 K and 1.2 bar to produce (07) olefins. Only two reactions have favourable equilibrium conversions at these conditions.

 $C_4H_{10} \rightarrow C_2H_4 + C_2H_6 \quad (I)$

 $C_4H_{10} \rightarrow C_3H_6 + CH_4 \quad (II)$

If these reactions reach equilibrium, what is product composition? At 750 K equilibrium constants for both reactions.

 $K_{\rm I} = 3.856, K_{\rm II} = 268.4$

Q.4

Given a plant process that requires cooling of 54.5 m³/h of water from 12.6 to 7^oC, assume that the cooler heat transfer area will enable a 5^oC differential between the chilled water leaving the cooler and the R-12 evaporating temperature. Also assume that the condenser heat transfer area enable a 5^oC differential between the condenser water out and R-12 condensing temperature. Water is available for the condensing medium at 30° C inlet and 35° C outlet. Assume no liquid subcooling or suction gas superheating. Find

- (a) Tons of refrigeration.
- (b) Evaporator pressure.
- (c) Condenser operating pressure.
- (d) Refrigeration effect.
- (e) Mass flowrate of R-12 circulated.
- (f) Compression ratio.
- (g) Coefficient of performance.
- (h) Condenser water quantity.

Exponential Coefficient for isentropic compression of R-12 is n = 1.19. Properties of R-12

Т, К	P, bar	h _l , kJ/kg	hg, kJ/kg		
260	1.959	387.7	546.1		
270	2.784	397	550.7		
280	3.825	406.5	555.1		
290	5.184	416.1	559.4		
300	6.84	426	563.5		
310	8.86	436	567.3		
320	11.29	446.2	570.9		
Specific heat of water = $4.1868 \text{ kJ} / (\text{kg.}^{0}\text{C})$					
Specific heat of R-12 in gas phase = $0.25 \text{ kJ} / (\text{kg.}^{0}\text{C})$					

(07)

OR

Explain with neat sketch the working of Lithium Bromide water Vapour Q4(a) (07) absorption refrigeration cycle. Explain with neat sketch the working of modified Vapour Compression **(b)** (07) refrigeration cycle. Explain method for DEWT calculation with the help of block diagram and Q5(a) (07) all supportive equations. **(b)** A saturated liquid mixture, containing 45.1% propane, 18.3% iso-butane (07) and 36.6% *n*-butane (by mole), is available at 40.8 bar a and 125.6° C

OR

(398.78 K). It is adiabatically flashed at 22 bar a and 93.1°C (366.25 K). At

these conditions, K values are 1.42, 0.86 and 0.72, respectively.

Q5(a) A feed to a column has the composition given in the table below, and is a (07) pressure of 14 bar and a temperature 60°C. Based on calculations verify that the given mixture is a Vapour-liquid mixture at given conditions.

Feed	kmol/h	Ki
ethane	20	3.8
propane	20	1.3
isobutene	20	0.43
n-pentane	<u>20</u>	0.16
Total:	<u>80</u>	

Also determined the flow rates and composition of vapour and liquid phases.

(b) Explain method for BUBLT calculation with the help of block diagram (07) and all supportive equations.
