Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER-I(New course) • EXAMINATION - WINTER- 2015

Subject Code: 2712508		Code: 2712508 Date: 01/01/201	Date: 01/01/2016	
Su	bject	Name: Theory of Yarn Structure		
	Time: 2:30 pm to 5:00 pm Total Mar		70	
Inst	2.	Attempt all questions.		
Q.1	(a) (b)	What are the constituents of yarn quality for spinner, weaver and knitter? Write a short note on different ways in which fiber packing occurs in yarns.	07 07	
Q.2	(a)	With suitable diagram, explain microscopic method for evaluating yarn	07	
	(b)	diameter. What is Schwarz's constant? Derive Platt's equation for low strains $\varepsilon_f = \varepsilon_y sec^2\theta$. What are the assumptions made?	07	
		OR		
	(b)	For ideal and perfect migration, prove that RMS deviation (D) is 0.3.	07	
Q.3	(a)	Prove theoretically that the number of filaments crossing corresponding to any given increment of length is constant. Also derive equation to find out retraction in filament yarn.	12	
	(b)	•	02	
Q.3	(a) (b)	Write short note on qualitative view of spun yarn mechanics. Explain the basic structural features of open end yarn.		
Q.4		Derive theoretical prediction equation of yarn tenacity for ϵ_f < 10 % OR		
Q.4		Derive an equation to predict filament strain ϵ_f for large value of ϵ_y	14	
Q.5		State and define various migration parameters along with expressions. Explain fully the migration analysis as carried out by Riding using statistical correlogram approach, and interpret.	14	
0.5		OR	1.4	
Q.5		 Calculate Following: (i) 176/74/250 Polyester filament yarn has a packing factor of 0.80. The yarn is subjected to a strain up to 15%. Assuming coaxial helical geometry and constant volume, will the yarn be able to sustain the strain if the filament breaking strain is 14.0%? (ii) The breaking load of a PFY, with denier 160/74/0, is 400 g. What will be 	14	
		the tenacity in gpd? (iii) Hamilton yarn geometer gave the following values: Yarn major dia = 240 microns Yarn minor dia = 130 microns If the yarn count is 36 ^s Ne and fiber specific volume is 0.657 cm ³ /g, estimate packing factor.		
		(iv) What will be the value of the mean fiber position for perfect migration for a staple yarn if $\mathbf{V_y} = 1.25$ and $\boldsymbol{\tau} = 45$ ***********************************		

1