Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code: 2712904

Time: 2:30 pm to 5:00 pm

Subject Name: Control System Theory

ME - SEMESTER-I(New course) • EXAMINATION - WINTER- 2015

Date: 02/01/2016

Total Marks: 70

structions:					
	2. 1	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.			
Q.1	(a)	Explain both lead & lag compensation based on Root locus and Frequency response approach.	07		
	(b)		07		
Q.2	(a)	Find the State Transition Matrix $\Phi(t)$ $\begin{bmatrix} \dot{x}1\\ \dot{x}2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -2 & -3 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} \text{ and also find } \Phi^{-1}(t).$	07		
	(b)	Explain Preliminary Design consideration in time & frequency domain based on Root Locus.	07		
		OR			
	(b)	Explain the implementation of Digital PD Controller.	07		
Q.3	(a) (b)	Explain Jury Stability Criterion in detail. Find Controllable canonical form (CCF) of the following. $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ OR	07 07		
Q.3	(a) (b)	Explain Controllability & Observability in control system. The Transfer function of a control system is given by $\frac{Y(s)}{U(s)} = \frac{(s+2)}{s^3 + 5 s^2 + 23 s + 24}$ Determine whether the system is completely controllable or not?	07 07		
Q.4	(a)	Obtain the state model for phase variable form for the Transfer Function $\frac{Y(s)}{U(s)} = \frac{(S+3)}{s^3 + 5 s^2 + 8 s + 4}$	07		
	(b)	Design sliding mode controller so that close loop system falls upon sliding line $\begin{bmatrix} \dot{x}1\\ \dot{x}2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ -10 & -6 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} + \begin{bmatrix} 0\\ 4 \end{bmatrix}$ u & F = $\begin{bmatrix} 1 & 0 \end{bmatrix}$ x OR	07		
Q.4	(a) (b)	Explain Liapunov based stability analysis with suitable example. Discuss the effect of load disturbance on control system with suitable Example.	07 07		

Q.5	(a)	Explain the concept of Multivariable system in detail.	07
	(b)	Discuss Parameter Optimization in optimal control system.	07
		OR	
Q.5	(a)	Explain homogeneous state equations in time-domain.	07
	(b)	Explain Quadratic Optimal Regulator System.	07
