GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER–I(New course)• EXAMINATION – WINTER- 2015

Subject Code: 2712909	Date: 31/12/2015
Subject Name: Higher Engineering Mathematics	
Time:2:30 pm to 5:00 pm	Total Marks: 70
Instructions:	

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Obtain Fourier series to represent the function $f(x) = x - x^2$ in the interval 07

$$[-\pi,\pi]$$
. Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$.

- (b) State Cayley-Hamilton theorem and using it find the inverse of the matrix 07 $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$
- Q.2 (a) Find a real root of the equation $x^3 x 11 = 0$ correct to three decimal places by 07 using Bisection Method.
 - (b) Using Newtonøs Divided Difference Formula find the value of f(15) from the 07 following table:

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028
OR						

- (b) Evaluate the following integral using Trapezoidal Rule(Take h=0.1): 07 $\int_{-1}^{5.2} \log_e x \, dx$
- Q.3 (a) Find a real root of the equation $x^3 2x 5 = 0$ correct to three decimal places by 07 using Secant Method
 - (b) Find a real root of the equation $3x \cos x 1 = 0$ correct to three decimal places 07 by using Newton-Raphson Method

OR

Q.3 (a) Solve the following system of equations by using Gauss elimination method. 07 x + y + z + w = 2x + y + 3z - 2w = -6

2x + 3y - z + 2w = 7

x + 2y + z - w = -2

(b) Find half range sine and cosine series for $f(x) = e^x$ in interval 0 < x < 1 07

Q.4 (a)
(i) Evaluate
$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$
 using Gauss two points formula.
(i) Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ using Gauss three points formula.
(i) Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ using Gauss three points formula.

(b) Define Numerical Integration and Compare Trapezoidal Rule Simpsonøs-1/3 07 Rule and Simpsonøs-3/8 Rule.

OR

- Q.4 (a) Detemine the largest eigen value and corresponding eigen vectors of the 07 following matrix correct to three decimal places by using Power Method $\begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$
 - (b) By using Gauss-Jordan method find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ 07
- Q.5 (a) Apply Runge-Kutta Method of order four to find an approximate value of y when 07 x=0.2, given that $\frac{dy}{dx} = x^2 + y^2$, y(0)=1.
 - (b) Using Taylorøs series method compute y(0.2) correct to five decimal places, 07 given that $\frac{dy}{dx} = 1 2xy$, y(0) = 0.

OR

Q.5 (a) Use Newtonøs Forward Interpolation Formula to find the form of f(x) from the following table. 07

x	0	1	2	3
f(x)	1	2	1	10

(b) Use Lagrange s Interpolation Formula to find the value of y for x=10 from the following table. 07

x	5	6	9	11
y	12	13	14	16
