GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER–I(New course)• EXAMINATION – WINTER- 2015

Subjec				Date:	04/01/2016
Time:2	2:3	0 pm t	DISCRETE TIME SIGNAL PROCESSING o 5:00 pm	Total	Marks: 70
1 2 3	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Notations and symbols used have usual meaning 				
C).1	(a)	State and prove initial value and final value theoret transform. Obtain the initial value for $x(z) = 2+3z^{-1}+4z^{-1}$		Z- 06
		(b)	 (i) Draw low-pass filter magnitude characteristics with necessary tolerance limits. (ii) State relation between z- transform and discrete Fortransform. (iii) State and explain sampling theorem. (iv) State and prove differentiation property of Fourie Transform. 	n all ourier	08
() .2	(a) (b)	Explain DIF- FFT Algorithm using signal flow graphs for Describe any one type of DSP architecture. OR	or N=4.	07 07
		(b)	Describe Implementation of a DSP algorithm.		07
(2.3	(a)	An LTI system is characterized by $y(n) - ay(n-1)$ determine its frequency and impulse response using D		n); 07
		(b)	Discuss changing the sampling rate using discrete time pro- OR		07
(2.3	(a)	For the two four-point sequences $x(n) = cos(n\pi/2)$ a $sin(n\pi/2)$. Obtain linear convolution of $x(n)$ with $y(n)$	• • • /	
		(b)	Define sampling .Define aliasing and discuss its remed	ies.	07
(2.4	(a)	Find inverse Z –transform of (i) X (z) = $\begin{array}{c} 1 \\ (1 - 0.25z^{-1}) & (1 - 0.5z^{-1}) \\ (ii) X (z) = \log (1 + az^{-1}) & z > a . \end{array}$	> (1/2	07).
		(b)	For H (z) = $2/(z+3)$, obtain Direct form - II and its realization.	transpos	ed 07
().4	(a)	OR Obtain z-transform for (i) $x(n) = -a^n u(-n-1)$ and (ii) $x(n)$ Also, state ROC for each and plot pole- zero diagram.	$= a^n u(a)$	n). 07
(2.4	(b)	For linear phase FIR filters, how constant group a delay is achieved? Also, enlist various design techn linear phase FIR filter.	-	

- Q.5 (a) State and prove the following properties of DFT: (i) linearity 07 (ii) duality (iii) periodicity (iv) circular convolution.
 - (b) Describe the Kaiser window filter design procedure for a high 07 pass filter.

OR

Q.5	(a)	Find the 4- point DFT	of the sequence $x(n) = \{1, 1, 0, 0\}$.	07
-----	------------	-----------------------	---	----

(b) Compare FIR filter with IIR filter in tabular form. 07
