Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER-I(New course) • EXAMINATION - WINTER- 2015

Subject Code: 2713007 Date: 31/12/2015

Subject Name: Numerical Methods and Statistical Analysis for Chemical Engineering

Time:2:30 pm to 5:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define following terms:

07

Total Marks: 70

- a) Accuracy
- b) Precision
- c) Significant Digits
- d) True Percentage Relative Error
- e) Approximate Percentage Relative Error
- f) Normalization of mantissa
- g) Error Propagation
- **(b)** Explain Bisection method and write a three step algorithm for it.

07 07

07

- Q.2 (a) Using three parameter Antoine equation for vapor pressure of any component, develop the linear regression expression for obtaining Antoine constants.
 - (b) Curve fit the data points generated using $y = 2\sin(\pi x)$ for 0 Ö x Ö 1 by a 2^{nd} degree polynomial. Estimate the error at x = 0.25.

OR

- (b) Show that the Lagrangian interpolation formula for 2nd degree applied to equispaced data points gives the same result as Newtonøs forward difference formulae.
- Q.3 (a) Use composite trapezoidal rule with $\hat{\mathbf{e}} \times = 0.2$ to evaluate integration of $x \ln x$ in the range 1 to 2. Compare your results with the analytical value.
 - (b) Given the data (t y), estimate $\frac{d^2 y}{dt^2}$ numerically at t=1.5 using Newtonøs forward difference formula correct to $O(\Delta t)$.

t	y
0	0
0.5	1.1875
1	5.0000
1.5	18.175
2.0	52.0000
2.5	122.1875
3.0	249.0000

1

- Q.3 (a) Explain the method of cubic spline approximation to a function with working equations.
 - (b) Consider the set of under given five data points and fit a third degree polynomial. 07 Check if your polynomial replicates your data points.

T(K)	P(bar)
259.2	0.04267
290.1	0.21525
350.9	2.01571
446.4	17.682
508.1	47.000

- **Q.4** (a) Explain the Gauss Elimination technique for solution of simultaneous linear equations and highlight its strengths and limitations.
 - (b) Differentiate ODE with Initial Value Problems and Boundary Value Problems. 07 Explain Shooting method.

OR

- Q.4 (a) Compare Gauss-Jordan Method and Gauss-Seidel Iteration Method for solution of simultaneous linear equations.
 - (b) Discuss modifications and Improvements in Euler

 Method and compare with 07 Runge-Kutta Methods.
- Q.5 (a) Discuss Sampling Distributions and Confidence Interval for statistical analysis. 08
 - **(b)** Differentiate Parabolic, Hyperbolic and Elliptic PDEs with examples.

OR

- Q.5 (a) What information is expected from values of Standard Deviation and Variance for Stochastic Processes? Explain with example.
 - (b) Explain the finite difference method for solution of PDEs. 06

07

06