Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER-I(New course) • EXAMINATION - WINTER- 2015

Subject Name: Membrane Separation Processes			: 04/01/2016
			Total Marks: 70
	2. Ma	tempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.	
Q.1	(a)	State various methods of manufacturing of polymeric membran and discuss any one in details.	es 07
	(b)	 Answer the following questions to the point: i] Name a membrane process in which phase change takes placified and a membrane process in ascending order of solute particle size: RO,UF, NF, MF iii] Which membrane process may be suitable for the recovery proteins from whey? iv] How does temperature affect solvent flux and solute rejection RO? v] What is the driving force in dialysis? vi] What is the difference between liquid-liquid extraction and liquid membrane separation? vii] The ideal separation factor of B and A for diffusion through polymer film is α*_{BA} = 4.5. The permeability of A (P'_A) = 	of on nd
Q.2	(a)	barrer, what is the permeability of B? Compare Kedem-Katchalsky and Spiegler-Kedem model solvent and solute transport by reverse osmosis. Discuss brief the Solution-diffusion models of solute transport in rever	fly
	(b)	osmosis. Explain concentration polarization in ultrafiltration process with schematic diagram. How can the effect of concentration polarization be reduced in pressure driven membrane processes? OR	on
	(b)	Discuss the effect of various parameters on the performance nanofiltration process. State few industrial applications nanofiltration	
Q.3	(a) (b)	Discuss solvent and solute transport mechanism in nanofiltration Discuss fundamental mechanisms of gas transport with spec mention of dual sorption model.	
Q.3	(a)	OR Derive the design equation for the separation of binary g mixture using a complete mixing model. State the assumptio clearly.	

A membrane is to be used to separate gaseous mixture of 'A' & 07 **(b)** 'B' whose feed flow rate is 1×10^4 cm³(STP)/s and feed A, $x_f = 0.50$ mole fraction. The desired composition of composition of the reject $x_0 = 0.25$, the membrane thickness 2.54 $\times 10^{-3}$ cm, the pressure on the feed side 80 cm Hg and on permeate side 20 cm Hg. Permeabilities of A and B are 50×10^{-10} and 5×10^{-10} cm³ (STP).cm/(s.cm². cm-Hg) respectively. Assuming complete mixing model, calculate the permeate composition, fraction permeated and the membrane area. Given:

$$a = 1 - \alpha^*$$

$$b = \frac{p_h}{p_l} (1 - x_o) - 1 + \alpha^* \frac{p_h}{p_l} x_o + \alpha^*$$

$$c = \alpha^* \frac{p_h}{p_l} x_o$$

State the basic principle of pervaporation. Discuss critically the **Q.4** (a) phenomenon of temperature-drop at the membrane surface during pervaporation. State various industrial applications of pervaporation and discuss

any one application with a schematic diagram.

OR

Derive various mass transfer resistances in a dialysis process with **(b)** 14 a schematic diagram.

A dialysis process is being designed to recover a certain solute from a dilute solution having solute concentration 2.0×10⁻² kg mol/m³ through a membrane to a solution having solute concentration 0.3×10^{-2} kg mol/m³. The membrane is 1.59×10^{-5} m thick. The distribution coefficient is 0.75; diffusivity of solute through membrane is 3.5×10^{-11} m²/s. The mass transfer coefficients in the upstream and downstream are 3.5×10^{-5} m/s and 2.1×10⁻⁵ m/s respectively. Calculate

- (i) The individual resistances, total resistance and the total percent resistance of the two films.
- (ii) The flux at steady state and the total area in m² for a transfer of 0.01 kg mol solute/h.
- **Q.5** (a) Explain the working principles of various types of liquid 07 membranes with schematic diagrams.
 - What are the applications of liquid membrane technology? 07 **(b)**

Discuss various configuration and mechanism of membrane

- **Q.5** (a) distillation. State the characteristics of membranes used in membrane distillation?
 - Write a short note on recycle membrane bioreactor. **07 (b)**

07

14