GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-I(New course)• EXAMINATION – WINTER- 2015

Subjec Subjec	ct Code: 2714202	Date: 04/01/2016		
Time:	2:30 pm to 5:00 pm	Fotal Marks: 70		
Instruct	 ions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 			
Q.1 (a)	 Define the followings: (i) Space Complexity (ii) Time Complexity (iii) Hard Problem (iv) Deterministring (v) Cell (vii) Net (viii) Dia 	07		
(b)	 (iv) Polynomial Time (v) Cell (vi) Net (vii) Pin Partition the given circuit using Fiduccia Mattheyses (FM) Algor 	ithm 07		

(b) Define Routing Regions and its different representations.

OR

- (b) Compare Floorplan v/s Placement
- Q.3 (a) The placement P shown in figure corresponds to the circuit whose signal nets are 07 given below. Weights w_i refers to the number of wires required for each net. Compute X(P), Y(P) and L(P).

Nets	Weight
$N_1 = (A, B, C)$	$w_1 = 1$
$N_2 = (C, D, E)$	$w_2 = 3$
$N_3 = (D, F, G)$	$w_3 = 4$

(b) Explain: Hadlock's Algorithm.

(a) Explain: Lee Algorithm.

Q.3

OR

07

07

07

- 07
- 1

- (b) What is polish expression? Explain with an example how it can be useful in **07** Floorplan.
- Q.4(a) Explain Mikami-Tabuchi's Algorithm.07(b) Discuss the methods to reduce running time of Lee Algorithm.07

OR

- Q.4 (a) Discuss in detail Simulated Annealing Algorithm and its importance in VLSI. 07
 - (b) What is difference between Shortest Path and Desired Path.? How to find more 07 desirable path?
- Q.5 (a) Discuss in brief: Channel Routing, Problem Definition and its objectives. 07
 - (b) Consider a chip of size 3 rows by 3 columns. Given below are 5 signal nets and 07 their corresponding weights (A_i corresponds to pin i of cell A). For the placement P Shown in figure where each cell occupies one grid unit, compute L(P).

Nets	Weight	F		н			
$N_1 = (A_1, B_1, H)$	$w_1 = 2$	'		11			
$N_2 = (B_2, C_1)$	$w_2 = 4$				F		
$N_3 = (C_2, D)$	$w_3 = 3$			٨	+	De	
$N_4 = (E_1, F)$	$w_4 = 1$			A			
$N_5 = (A_2, E_2, G)$	$w_5 = 3$			-•			
		G	5	D		С	

OR

- **Q.5** (a) Explain followings
 - (i) HCG
 - (ii) VCG
 - (b) Explain following terms with respect to Floorplan:
 - (i) Rectangular Dissection
 - (ii) Slicing Structure
 - (iii) Slicing Tree
 - (iv) Wheel
 - (v) Skewd and Non-Skewd Floorplan and Polish Expression

07

07