Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER-I(New course) • EXAMINATION - WINTER- 2015

Subj	ect (Code: 2714302	Date:	02/01/2016
•	e:2:3	Name: Theory of Elasticity and plastic 30 pm to 5:00 pm	Total	Marks: 70
		Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Is the following 2-D state of plane strain is possible? Check. $\varepsilon_X = 4x^3y + 3x^2 - 13.5x^2y^2 + 18y + 4$ $\varepsilon_Y = 4xy^3 + 6x - x^2 + 3y^2 + 5$ $\varepsilon_{XY} = \frac{1}{2} \gamma_{XY} = -2x^2 - 1.5y^2 - 4.5x^3y - xy + 4$	07	
	(b)		ind	
Q.2	(a)	Derive general equation of deflection (δ) for a beam column with concentrated load.	a 07	
	(b)	Derive general equation of deflection (y) for a beam column w continuous lateral load.	ith 07	
	(b)	Using trigonometry series determine the value of critical load by assumi suitable shape of curve. State the advantages of energy approach.	ing 07	
Q.3	(a)	Discuss imperfection approach and state the principle of imperfection stability of column.	for 07	
	(b)	Describe theory of Von Mises for yield criteria. OR	07	
Q.3	(a)	Derive the following equation with usual notations $\varepsilon_{\theta} = \frac{1}{2}(\varepsilon_{x} + \varepsilon_{y}) + \frac{1}{2}(\varepsilon_{x} - \varepsilon_{y})\cos 2\theta + \varepsilon_{xy}\sin 2\theta$	07	
	(b)		07	
Q.4	(a)	For the following state of stresses, find the principal stresses and direction cosines of any ONE principal stress. Normal stresses: $\sigma_{xx} = 400$ MPa, $\sigma_{yy} = 200$ MPa, $\sigma_{zz} = 300$ MPa, and Shear stresses: $\tau_{xy} = 80$ MPa, $\tau_{yz} = 10$ MPa, $\tau_{zx} = -60$ MPa,	the 10	ę
	(b)	The state of the s	the 04	
Q.4	(a)			

Tangential stress: $\sigma_\theta = - \, ^{4M}\!/_N \left[- \, a^2 b^2 / r^2 \, \ln \left(b/a \right) + b^2 \, \ln \left(r/b \right) + a^2 \, \ln \left(a/r \right) + b^2 - a^2 \right]$ If, moment: M = 150 kJ, internal & external radii: a = 200 mm & b = 300 mm respectively. Here; $N = (b^2 - a^2)^2 - 4 a^2 b^2 [\ln (b/a)]^2$

- (b) Derive basic differential equation of equilibrium in Cartesian co-ordinate 07 system.
- Q.5 (a) A cylinder 120 mm Φ (external) is subjected to an internal pressure of 50 07 MPa. There is no external pressure. If the allowable stress in the metal is 120 MPa calculate internal diameter.
 - (b) Find the linear strains: ϵ_{xx} , ϵ_{yy} and shear strain: γ_{xy} , if the linear strains 07 measured by the strain gauges in the direction are $\epsilon_{20^{\circ}} = 250 \mathrm{x} 10^{-6}$ (Tensile), $\epsilon_{80^{\circ}} = 300 \mathrm{x} 10^{-6}$ (Compressive) and $\epsilon_{140^{\circ}} = 150 \mathrm{x} 10^{-6}$ (Tensile). Also, calculate the state of stresses. Take E=2x10⁵ N/mm² & μ =0.25.

- Q.5 (a) Discuss in details dynamic or vibration approach. Discuss any one 07 structural application.
 - (b) Drawing neat sketch, explain the soap-bubble analogy of torsion in and derive the 07 equation $\phi = (2 C \theta S/p) z$ with usual notations.