Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- II(New course) • EXAMINATION (Remedial) – WINTER- 2015

Subject Code: 2720501Date: 08/12/2Subject Name: Statistical Signal AnalysisTime:2:30 pm to 5:00 pmInstructions:Total Marks			/2015	
		: 70		
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1	(a)	What is significance of Cumulative Distribution Function (CDF)? Show that Cumulative Distribution function (CDF) of random variable is non-decreasing function.	07	
	(b)	(i)A fair coin is tossed repeatedly until the first heads shows up; the outcome of the experiment is the number of tosses required until the first heads occurs. Find the probability law for this experiment.	04	
		(ii) Define conditional probability and explain with example	03	
Q.2	(a)	 (1) Two numbers x and y are selected at random between zero and one. Let the events A, B and C are defined as follows: A={x > 0.5}, B={y > 0.5}, and C = {x > y}. Are the events A and B are independent? Are the events A and C are independent? (2) State and explain conditions of events A and B to be statistically independent. 	04 03	
	(b)	 All manufactured devices and machines fail to work sooner or later. Suppose that the failure rate is constant and the time to failure (in hours) is an exponential random variable X with parameter λ. (a) Measurements show that the probability that the time to failure for computer memory chips in a given class exceeds lo4 hours is e⁻¹. Calculate the value of the parameter λ. (b) Using the value of the parameter λ determined in part (a), calculate the time x₀, such that the probability that the time to failure is less than x, is 0.05. 	07	
		OR		
	(b)	Let X be a binomial random variable with parameters (n, p) . Find the mean and variance of the same	07	
Q.3	(a)	Show that the poisson distribution can be used as a convenient approximation to the binomial distribution for large n and small p	07	
	(b)	What is Chebyshaveøs inequality? Where it is used? Write short note on it. OR	07	
Q.3	(a) (b)	Define and explain Mean Square Derivative of random process X(t) Let X be a continuous random variable with the pdf $f_X(x) = \begin{cases} e^{-x} & x > 0\\ 0 & x < 0 \end{cases}$	07 07	
		Find the transformation $Y = g(X)$ such that the pdf of Y is		
		$f_{\mathbf{r}}(y) = \begin{cases} \frac{1}{2\sqrt{y}} & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$		
Q.4	(a)	State and prove Central limit theorem.	07	

(b) Explain Joint Moments, Correlation, and Covariance. Also prove that covariance 07 of independent random variable is zero.

1

OR

- Q.4 (a) Define and explain Ergodic process. Explain concept of ensemble average and 07 time average.
 - (b) Consider two random variables X and Y with joint pdf f_{xy}(x, y). Let Z = X + Y.
 (a) Determine the pdf of Z.
 (b) Determine the pdf of Z if X and Y are independent.
- Q.5 (a) Consider an experiment of drawing randomly three balls from an urn containing two red, three white and four blue balls. Let (X, Y) be a random variable, where X and Y denotes respectively the number of red and white balls chosen, Find range of (X, Y), joint pmføs of (X, Y), marginal pmføs of X and Y. Are X and Y independent?
 - (b) Explain Mean Square Continuity in context of random process 07

OR

- Q.5 (a) Derive Power Spectral Density of output when random process x(t) passes 07 through LTI system having impulse response h(t)
 - (b) Show that a WSS random process X(t) is mean square continuous if and only if 07 its autocorrelation function $R_x(\tau)$ is continuous at $\tau = 0$.
