GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- II(New course) • EXAMINATION (Remedial) – WINTER- 2015

Su	bject	Code: 2720714 Date: 08/12/20	Date: 08/12/2015	
Su Tiı Inst	bject me:2 tructio 1. 2. 3.	Attempt all questions. Total Marks: Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	70	
Q.1	(a) (b)	Define and discuss the concept of state, state variables, state vector, state space and state equations. Discuss the following nonlinearities 1. Saturation 2. Relay 3. Dead Zone	07 07	
Q.2	(a)	Obtain the transfer function of the system defined by $ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $ $ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	07	
	(b)	Consider the following transfer function system: $\frac{Y(s)}{U(s)} = \frac{s+6}{s^2+5s+6}$ Obtain the state space representation of this system in (a) Controllable canonical form and (b) Observable canonical form (c) Jordan canonical form	07	
	(b)	OR Compute Ø of the following matrix. Obtain also the inverse of the stat-transition matrix $\emptyset^{-1}(t)$, $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$	07	
Q.3	(a)	Show that the following system is not completely observable: $\dot{x} = Ax + Bu$ y = Cx Where, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix}$	07	
	(b)	Derive the condition for checking the Controllability for a given system.	07	
Q.3	(a) (b)	OR Prove that the Eigen values are invariant under a linear transformation. Is the following system completely state controllable? $ \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $ $ y = \begin{bmatrix} 20 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	07 07	
Q.4	(a) (b)	Explain the variable gradient method for the determination of Liapunov function. Obtain the time response of the following system :	07 07	

1

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ Where u(t) is the unit step function occurring at t = 0 or, = 1 ()

OR

Q.4 (a) Define the Sylvesterøs criterion for checking the definiteness and also check the 07 definiteness of the following functions $V(x) = x^2 + 2x^2$

$$V(x) = x_1^2 + 2x_2^2$$

$$V(x) = 10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$$

(b) Consider the system

 $\dot{x} = Ax + Bu$ y = Cx where, $A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 20 & 9 & 1 \end{bmatrix},$ design a full order state observer, assume that the desired eigenvalues of the observer matrix are = -10, = -10

Q.5 (a) Design a state feedback controller gain using pole placement technique for the 07 system given by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ The desired pole locations of the closed loop

system are s = -3 and s = -5(b) What is the pole placement? Derive the equation for Matrix K using 07 Ackermannøs formula.

OR

- Q.5 (a)Explain design of control system with observers. Briefly discuss both
Configurations i.e. observer controller in feed forward path and in feedback
path.07
 - (b) The plant is given by $\dot{x} = Ax + Bu$ where, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. The system uses the state feedback control u=-kx,

the closed loop poles at s=-2+j4, s=-2-j4, s=-10. Determine the state feedback gain matrix K.

07