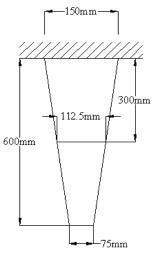
GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- II(New course) • EXAMINATION (Remedial) - WINTER- 2015

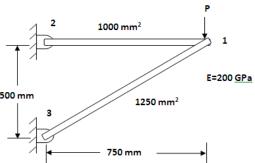
Subject Code: 2720801 Date: 09/12/2015

Subject Name: Finite Element Methods

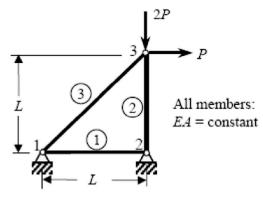

Time: 2:30 pm to 5:00 pm Total Marks: 70

Instructions:

1. Attempt all questions.

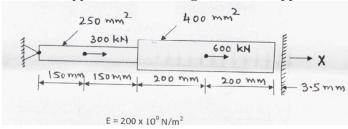

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss and Explain the Steps involved in finite element analysis.
- 07 07
- **(b)** Explain the weighted residual method for finite element formulation.
- 07 8 07
- Q.2 (a) Define plane stress and plane strain problem with at least two examples of each.

 (b) A thin Plate as shown in figure has uniform thickness of 02 am and its modulus.
 - (b) A thin Plate as shown in figure has uniform thickness of 02 cm and its modulus of elasticity is 200x10³ and density 7800 kg/m³. In addition to its self weight the plate is subjected to a point load P of 500 N is applied at its midpoint.
 - Considering two finite elements and find out (i) Global stiffness Matrix.
 - (ii) Global Load Matrix.



OR

(b) For the pin jointed configuration shown in figure. Determine the stiffness values K_{11} , K_{12} and K_{22} of the global stiffness matrix. Also calculate the stresses in elements and reaction at support. Take $P=1000\ N$.



- Q.3 (a) Explain the following elements used in FEA stating their applications. Draw 07 their sketches showing position of nodes.
 - (i) Plate bending elements (ii) Curved shell elements (iii) 3 D solid elements.
 - **(b)** Determine the displacements at point 3 (Figure Shown below) using Finite Element Method. All members are made of same material and are of same cross section.

OR

- Q.3 (a) Explain the detail discretization process with respect to the following points.
 - (i) Types of element (ii) Size of elements (iii) Location of nodes
 - (iv) Numbering of element (v) Node numbering system.
 - (b) Consider the bar as shown in above Figure. Determine the nodal displacements, element stresses and support reactions using elimination approach.

- Q.4 (a) Write the Governing equation and boundary conditions used to completely define a rod extrusion problem. Also derive it we weak form.
 - **(b)** Derive the element stiffness matrix for plain truss in globle coordinate system.

OR

- Q.4 (a) Giving suitable example, explain Lagrange method for a three degree of freedom spring mass system. Get the required equations of motion.
 - (b) Differentiate the following
 - (i) Transient and Eigen value problems
 - (ii) Completeness and compatibility of elements
 - (ii) Completeness and compationity of elements
- Q.5 (a) Explain consistent mass matrix approach for dynamic analysis using finite 07 element with illustrative example.
 - (b) Explain the following terms with reference to a FEA software 07
 - (i) Preprocessing (ii) Solution (iii) Post Processing

OR

- Q.5 (a) Discuss the shape function for 4-node quadrilateral element and define isoparametric formulation.
 - **(b)** Explain the statement of Finite element method is an approximate method of

07

07

07

07

07