Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- II(New course) • EXAMINATION (Remedial) - WINTER- 2015

Subject Code: 2720911		t Code: 2720911 Date: 10/12/20	Date: 10/12/2015	
Subject Name: Tribology Time:2:30 pm to 5:00 pm Instructions:		:30 pm to 5:00 pm Total Marks: 7	Total Marks: 70	
1115	1. 2.	Attempt all questions.		
Q.1 Q.2	(a) (b) (a)	Explain elasto-hydrodynamic lubrication theory. Explain the principle of hydrodynamic lubrication Discuss the physical significance of various terms of Reynolds equation used	07 07 07	
	(b)	for the hydrodynamic lubrication. Derive the equation for volume flow rate in an axial direction of hydrodynamic journal bearing.	07	
		OR		
	(b)		07	
Q.3	(a)	bearing. A fixed pad hydrodynamic thrust bearing of length L and width B has a fluid film shape given by relation $h = h_0 e^{-ax}$ where h_0 is minimum fluid-film	07	
	(b)		07	
		maximum at a distance of $\frac{nL}{n+1}$ from the leading edge.		
		OR		
Q.3	(a)	Derive the expression for the pressure distribution in entry zone of the Rayleigh step bearing.	07	
	(b)	Derive the expression for the pressure distribution in exit zone of the Rayleigh step bearing.	07	
Q.4	(a) (b)		07 07	
		OR		
Q.4	(a)	Explain the following friction measurement methods (1) Inclined plane rig (2) Pin on disk rig	07	
Q.5	(b) (a)	Explain the junction growth theory	07	
		$f_a = \frac{k}{\left(\frac{k^2}{2} \right)^{\frac{1}{2}}}$		
	(b)	Explain Archardøs theory of adhesive wear. OR	07	
Q.5	(a) (b)	Derive the Stribeck equation for basic static capacity of bearing. What is equivalent dynamic load for bearing under cyclic load?	07 07	