Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- II(New course) • EXAMINATION (Remedial) - WINTER- 2015

Subject Code: 2721602Date: 08/12/Subject Name: Chemical Process OptimizationTime:2:30 pm to 5:00 pmTime:2:30 pm to 5:00 pmTotal MarksInstructions:Total Marks				
Q.1	(a)	Using the Rosenbrock search technique, seek the minimum of the objective function $y = x_1^2 + 3x_2^2 + 5x_3^2$ using $s_1 = s_2 = s_3 = 1$, $\beta = 1/2$ and $\alpha = 3$. Carry out one	08	
	(b)	stage of search and find directions for next iteration. Discuss necessary any sufficient conditions for an extreme value of single and multivariable objective function.	06	
Q.2	(a)	Find the specification of an open-topped rectangular tank whose total area is $100 - 2$		
	(b)	to be 108 m ² , if a maximum volume is required. Explain the concept and algorithm of Differential Evolution technique with example.	07	
	OR			
	(b)	Explain the concept and working of Genetic Algorithm	07	
Q.3	(a)	List the first four search directions for Powelløs method to minimize	07	
		$(x) = x_1^2 + \exp(x_1^2 + x_2^2)$, staring at the point (2, 2).		
	(b)	Carryout eight cycle of vertex rejection and regeneration in searching for the minimum of the objective function $y = x_1^2 + 3x_2^2 + 5x_3^2$ using the Sequential Simplex method. Distance between vertices is a = 0.5 and one of the vertex at the point {0,0,0}.	07	
		OR		
Q.3	(a)	Define a suitable search region and a feasible initial base point for the complex method of search in minimizing $y = 5x_1^3 - 3x_1^2x_2 + x_2^2$ subject to the restrictions that	07	
		$3 + 2x_1 - 3x_2 \le 0$		
		$(x_1 - 1)^2 + (x_2 - 2)^2 \le 4$		
	(b)	Setup a complex method of search and carryout two cycles of search.	07	
	(b)	Carry out two stages of a Hooke-Jeeves search for searching a minimum of the objective function $y = x_1^2 + 3x_2^2 + 5x_3^2$. Use $\delta = 0.5$, starting from the base point (2, -1, 1). A stage consists of a local exploration, together with an accelerated move.	07	

- Q.4 (a) List out the techniques/methods which can be used to solve the optimization 07 problem: Find the minimum of $y = 4x_1^2 + 5x_2^2$ subject to $2x_1 + 3x_2 = 6$. Solve it using any method of your choice. 07
 - (b) Explain the interpretations with examples for
 - No positive ratio. •
 - Identical values of smallest positive ratio.
 - while solving any linear programming problem using simplex method.

Q.4 (a) Find the minimum of $y = \frac{2}{x_1 x_2} + \frac{3}{x_2} + 4x_1 x_2^2$ using geometric programming and 07

also find the location of minimum.

- (b) A log has the form of a frustum of cone 30 feet long, the diameters of its ends being 2 feet and 1 foot. A beam of square section is to be cut from the log. Find the length if the volume is maximum.
- Q.5 (a) Explain the basics of Multi objective optimization (MOO). Classify the 07 methods for MOO and discuss chemical engineering applications.
 - (b) Explain the concept and algorithm of Simulated Annealing technique with 07 example.

	•	OR	
Q.5	Find the minimum of the function	$y = 3x_1 + 5x_2$	14
	Subject to the restrictions	$x_1 + 3x_2 \ge 14$	
		$2x_1 - x_2 \ge 2$	
		$x_1 - 4x_2 \le 2$	
		$x_1 + x_2 \le 20$	
	with $x_1 \ge 0$ and $x_2 \ge 0$		
