Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER- II(New course) • EXAMINATION (Remedial) - WINTER- 2015

Subject Code: 2724502 Date: 08/12/2015

Subject Name: Power Electronics – II

Time: 2:30 pm to 5:00 pm Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Notations and symbols used have usual technical meaning.
- Q.1 (a) What is Displacement Power Factor (DPF)? Derive the relationship 07 between PF, DPF and %THD of a distorted supply current produced due to 1-phase diode-bridge rectifier as front-end converter having shunt capacitor filter across the resistive load.
 - (b) Neatly draw the output current (I_O) waveform of a 1-phase inverter from the description tabulated below. Calculate: (i) RMS output current $I_{O(RMS)}$ and (ii) Fundamental frequency component of output current $I_{O1(RMS)}$.

Determine only %THD of the output current waveform using $I_{O(RMS)}$ and $I_{O1(RMS)}.$

Positive half-cycle of output current (I_O) waveform:

θ (degree)	0	0	45	45	135	135	180	180
$I_{O}(A)$	0	5	5	10	10	5	5	0

Negative half-cycle of output current (I_O) waveform:

θ (degree)	180	180	225	225	315	315	360	360
I ₀ (A)	0	-5	-5	-10	-10	-5	-5	0

Q.2 (a) (i) What are the features of multilevel inverter?

- 04
- (ii) Draw any one leg of an NPC 5-level inverter. Explain various alternatives (switching states) which are possible to generate each of the voltage levels: $V_{AO} = -V_{dc}/4$, $V_{AO} = V_{dc}/4$, $V_{AO} = -V_{dc}/2$, $V_{AO} = V_{dc}/2$ and $V_{AO} = 0$. Tabulate these alternatives for each voltage level by showing the states (either $\div ON\emptyset$ or $\div OFF\emptyset$) of all the switches of the Pole-A.
- (b) Draw only the circuit diagram of a Class-E resonant inverter. It is having supply voltage = 48V, load = 40\u00e1, switching frequency = 20kHz and Q-factor = 6. Determine the optimum values of input inductor, input capacitor, resonance inductor and resonance capacitor.

OR

- (b) In a 1-phase diode-bridge rectifier; a large capacitor is connected across the resistive load in order to minimize the ripple in the DC-link voltage. Assume utility voltage as sinusoidal. Draw the following waveforms and comment on distortion in supply current:
 - (i) Waveform-1: Output voltage and output current
 - (ii) Waveform-2: Supply voltage, supply current, fundamental frequency component of supply current
- **O.3** (a) Explain the principle of operation of electronic ballast.

	(b)	Explain 6-pulse converter with neat diagram and waveforms.	07
		OR	
Q.3	(a)	Explain the DC voltage balance techniques for CCMLI.	07
	(b)	Explain the principle of operation of a half-bridge series resonant inverter having bidirectional switches with neat circuit diagram and waveforms.	07
		naving oldirectional switches with heat eneuti diagram and waveforms.	
Q.4	(a)	Explain PO, POD and APOD methods for controlling multilevel inverter.	07
	(b)	Explain 3-phase to 3-phase matrix converter.	07
		OR	
Q.4	(a)	What are the different applications of multilevel inverter? Explain any one	07
		application in brief.	
	(b)	Classify various DC and AC power supplies. Explain the principle of	07
		operation of SMPS with basic block diagram.	
Q.5	(a)	Explain the principle of operation of a 5-level diode clamped multilevel	07
		inverter with neat circuit diagram.	
	(b)	Explain the principle of operation of an L-type ZCS resonant converter	07
		with neat circuit diagram and waveforms.	
		OR	
Q.5	(a)	Explain the principle of operation of a basic series resonant inverter having unidirectional switches with neat circuit diagram and waveforms.	07
	(b)	Explain all the possible switching states in 7-level H-bridge inverter.	07
	(D)	Explain an the possible switching states in 7-level 11-bridge inverter.	07
