GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-I(New course)• EXAMINATION - WINTER- 2015

Subject Code: 3715203 Subject Name: Digital Signal Processing Time:2:30 pm to 5:00 pm **Instructions:**

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 Draw the basic block diagram of digital signal processing. Explain the ECG signal and 07 **(a)** seismic signal.
 - Test the system $y(n) = x(n^2) + x(-n)$ and $h(n) = a^{1x(n)l}$, for linearity, time invariance, stability (b) 07 and causality.
- **Q.2** Find the 4 point DFT of $x(n) = \{1, -1, 2, -2\}$ also verify the result using IDFT. 07 **(a)**
 - State the convolution property of z transforms. Find the z transform for given, **(b)** 07 $x(n) = n a^{n} u(n-1).$
 - OR
 - Define linear convolution. Determine the response of the system characterized by the impulse 07 **(b)** response $h(n) = \left(\frac{1}{2}\right)^n u(n)$ to the input signal $x(n) = (3)^n u(n)$.

Q.3 **(a)** Obtain the inverse system for 07 $H_1(z) = \frac{1 - 0.5 z^{-1}}{1 - 0.9 z^{-1}} \text{ with ROC } |z| > 0.9 \text{ and}$ $H_2(z) = \frac{z^{-1} - 0.5}{1 - 0.9 z^{-1}} \text{ with ROC } |z| > 0.9$ **(b)** Explain in brief Remez algorithm. 07

- OR **Q.3** Explain sampling of continuous time signals. 07 **(a)** Explain IIR filter design by bilinear transformation method. **(b)** 07 0.4 **(a)** Convert the analog low pass filter specified by: 07 $H_a(s) = \frac{4}{s^2 + 9}$ into a digital filter making use the backward difference for the derivate. Compare IIR filter and FIR filter. **(b)** 07 OR Determine the order of a Butterworth low pass filter satisfying the following specifications: 07 **Q.4 (a)**
 - $f_p=0.10$ Hz, p=0.5 dB, $f_s=0.15$ Hz, s=15 dB, f=1 Hz(Use Bilinear Transformation Method) 07
 - Write a brief note on spectral transformation of IIR digital filter. (b)
- Find the 4 point DFT for $x(n) = \cos\left(\frac{n\pi}{2}\right)$ using DIT FFT algorithm. Q.5 **(a)** 07

Date: 04/01/2016

Total Marks: 70

Enrolment No.

(b) What is the significance convolution? For input $x(n) = \{1,2,0,1\}$ and the impulse response 07 $h(n) = \{2,2,1,1\}$ of a LTI system. Determine the response of the system.

OR

- Q.5 (a) State and prove the differentiation in the frequency domain property of DTFT. 07
 - (b) Obtain the direct form II and cascade form of realization for the given LTI system governed 07 by the equation:

$$y(n) = -\left(\frac{13}{12}\right)y(n-1) - \left(\frac{9}{24}\right)y(n-2) - \left(\frac{1}{24}\right)y(n-3) + x(n) - 4x(n-1) + 3x(n-2)$$
