Seat No.:		Enrolment No GUJARAT TECHNOLOGICAL UNIVERSITY		
	ıbject	E. SEMESTER I (old course)—EXAMINATION (Remedial) — WINTER 2015 tode: 710905 Date: 15/12/201 Name: Tribology	15	
	•	:30 AM to 1:00 PM Total Marks: 70		
In	struct	ions:		
	2 3	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Draw neat sketches wherever necessary to justify answers. 		
Q.1	(a)	Define the tribology and state and explain the main areas of tribology giving their importance. State the practical applications of tribology in industries.	07	
	(b)	Explain the different configurations of hydrodynamic journal bearings with neat sketch.	07	
Q.2	(a) (b)	Explain the step by step procedure used for selection of antifriction bearings. Explain the concept of wear particle analysis ferrography in detail. OR	07 07	
	(b)	List and explain the factors affecting wear rate. Also explain the coating for wear resistance.	07	
Q.3	(a)	Derive from basic principles 3-D Reynoldøs equation taking usual notation stating the different assumptions.	07	
	(b)	The following data refers to a 360° hydrodynamic bearing: Journal diameter = 50 mm Radial load = 3.2 kN Bearing length = 50 mm Journal speed = 1490 r.p.m.	07	
		Radial clearance = 0.050 mm Oil viscosity = 25 cP $\frac{1/d h_0/c S CFV = f(r/c) FV = Q/rcnl}{1 0.4 0.121 3.22 4.33}$ Find the following: (i) Minimum oil film thickness (ii) friction coefficient (iii) total flow of lubricant in lit/min and (iv) power lost in friction.		
Q.3	(a)	OR Derive Petrofføs equation for hydro journal bearings mentioning different	07	
	(b)	assumptions made. Design a journal bearing for a centrifugal pump for given specifications: Load on journal = 20 kN Diameter of journal = 100 mm Speed of journal = 900 rpm Clearance ratio = 0.0013 Permissible bearing pressure = $0.7 \text{ to } 1.4 \text{ N/mm}^2$ (Range) L/d ratio = $1 \text{ to } 2 \text{ (Range)}$ Ambient temperature = $15.5 ^{0}\text{C}$. Z.N / p = $28 \text{ (where p is MPa)}$, Operating temperature = $70 ^{0}\text{C}$. Temperature rise for oil is limited to $10 ^{0}\text{C}$ Oil SAE10 Viscosity at $55 ^{0}\text{C} = 0.017 \text{kg/m-sec}$	07	
Q.4	(a)	Heat dissipation coefficient = $1232 \text{ W/m}^2/{}^0\text{C}$ Specific heat of oil = $1900 \text{ J/Kg/}{}^0\text{C}$ Explain the elasto-hydrodynamic lubrication (EHD) in detail stating its	07	

examples.

	(b)	Explain regimes of lubrication with the help of neat sketch.	07
		OR	
Q.4	(a)	State the different functions of the lubricants and their important properties of	07
		lubricants in detail.	
	(b)	Explain the following in respect to surface characteristics:	07
		(i) Waviness	
		(ii) Surface roughness	
		(iii) Bearing area curve	
		(iv) CLA & RMS	
		(v) Tribo system	
Q.5	(a)	Explain the diagnostic maintenance of tribological components and considerations in IC engines and automobile parts.	07
	(b)	Explain the air/gas bearing in detail with neat sketch.	07
	()	OR	
Q.5	(a)	Derive the equation for load carrying capacity of hydrostatic static step bearing	07
		with neat sketch.	
	(b)	State the different theories of friction. Explain any one of them which is widely accepted with neat sketch.	07
