Sea	t No.:	Enrolment No		
Sul Tin	oject oject ne: 10: truct 1. 2.	GUJARAT TECHNOLOGICAL UNIVERSITY SEMESTER I (old course)-EXAMINATION (Remedial) - WINTER 2015 code: 711201N Date: 08/12/20 Name: ADVANCED FLUID MECHANICS 30 AM to 1:00 PM Total Marks: 70 ions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	15	
Q.1	(a)	What is the importance of studying a open channel flow	07	
	(b)	Explain the application of Navier-stokes equation.	07	
Q.2	(a)	Classify the following open-channel flow situation	07	
		1. Flow from a sluice gate		
		2. Flow in a main irrigation channel		
		3. A river during flood		
		4. Breaking of a dam		
		5. Flow over a spillway		
		6. Sudden opening of a sluice gate		
		7. Flow in sewer.		
	(b)	A discharge of 16.0 cubic meter per second with a depth of 2.0 meter in a rectangular channel 4.0 meter wide. At a downstream section the width is reduced to 3.5 meter and the channel bed is raised by 0.20 meter. Analyze the water surface elevations in the transitions.		
	(b)	A concrete-lined trapezoidal channel (n= 0.015) is to have a side slope of 1.0 horizontal: 1.0 vertical. The bottom slope is to be 0.0004. Find the bottom width of the channel necessary to carry 100 cubic meter per second of discharge at a normal depth of 2.50 meter.		
Q.3	(a)	Develop the gradually varied flow equation $dy/dx = (S_o - S_f)/(1-Q^2T/gA^3)$ where the terms have their usual meaning.		
	(b)			
		OR	07	
Q.3	(a)	What is the direct-step method for computing GVF profiles explain briefly?		

(b) A small stream has a cross-section which can be approximated by a trapezoid.07The cross-sectional properties at three sections are as follows:

Section	Distance up the	Bed	Bed	Side slope
	river (km)	elevation (m)	width	
A	100.00	100.00	14.0	1.5:1
В	102.00	100.80	12.5	1.5:1
С	103.50	101.40	10.0	1.5:1

Section A is the downstream-most section. For a discharge of 100.0 cubic meters per second in the stream, water-surface elevation at A was 104.500 meter. Estimate the water-surface elevation at the upstream sections B and C. Assume n = 0.02 and = 1.0 at all sections.

(a)	Derive the sequent depth ratio for hydraulic jump on sloping floor.		
(b)	Derive the differential equation of SVF with decreasing discharge.	07	
	OR		
(a)	Explain prandtløs mixing length theory?	07	
(b)	Explain the method of characteristics.	07	
(a)	Briefly explain a positive surge.	07	
(b)	What is meant by separation of boundary layer? How is the separation point determined? State the reasons for separation.	07	
	OR		
(a)	Write a short note on hydraulically smooth and rough pipes.	07	
(b)	Explain flow net with its limitation and utility.	07	
	(b) (a) (b) (a) (b)	 (b) Derive the differential equation of SVF with decreasing discharge. OR (a) Explain prandtløs mixing length theory? (b) Explain the method of characteristics. (a) Briefly explain a positive surge. (b) What is meant by separation of boundary layer? How is the separation point determined? State the reasons for separation. OR (a) Write a short note on hydraulically smooth and rough pipes. 	
