GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY M.E. SEMESTER III-EXAMINATION (Remedial)- WINTER 2015 Subject code: 730403 Date: 07/12/2015 Subject Name: OPTIMIZATION TECHNIQUES Time: 2:30 PM to 5:00 PM Total Marks: 70					
Q.1	(a) (b)	(i) Define Objective function with appropriate example.(ii) Define Constrained and Unconstrained optimization problems.Explain the Steepest descent method of unconstrained optimization methods in detail.	03 04 07		
Q.2	(a) (b)	Explain Weierstrass theorem. Maximize $f = -X_1^2 - X_2^2 + 4X_1 + 4X_2 - 8$ subject to $X_1 + 2X_2 \le 4$ $2X_1 + X_2 \le 5$ Using Kuhn-Tucker conditions.	07 07		
	(b)	OR Use the simplex method to solve the following LP Unbounded problem: Minimize $f = -3x_1-2x_2$ subject to $x_1-x_2 \le 1$ $3x_1-2x_2 \le 6$ where $x_1, x_2 \ge 0$.	07		
Q.3	(a)	Find the minimum of the function $f(\lambda) = 0.65 \cdot [(0.75)/(1 + \lambda^2)] - 0.65 \lambda \tan^{-1}(1/\lambda)$ using Newton-Raphson method with starting point $\lambda_1 = 0.1$ and use $\varepsilon = 0.01$ for checking the convergence.	07		
	(b)	Minimize the function $f(x) = 0.65 - [0.75/(1 + x^2)] - 0.65 x \tan^{-1} (1/x)$ in the interval [0,3] using the fibonacci method with $n = 6$. OR	07		
Q.3	(a) (b)	Find the minimum of $f = \lambda^5 - 5\lambda^3 - 20\lambda + 5$ by the cubic interpolation method. Minimize the function f (x) = 0.65 - $[0.75/(1 + x^2)] - 0.65 \times \tan^{-1} (1/x)$ by the golden section method using with n = 6.	07 07		
Q.4	(a) (b)	Write the algorithm of Hooke and Jeeves' Method. Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ from the starting point $x_1 = \begin{cases} 0 \\ 0 \end{cases}$ using Powell's method.	07 07		
Q.4	(a) (b)	OR Draw and explain the flowchart for Powell's method. Minimize f (x ₁ , x ₂) = x ₁ -x ₂ +2x ₁ ² +2x ₁ x ₂ +x ₂ ² by taking the starting point as $X_1 = \begin{cases} 0 \\ 0 \end{cases}$, using Newton's method.	07 07		
Q.5	(a)	Explain the basic approach of the interior penalty function method with algorithm.	07		

1

(b) Explain augmented Lagrange multiplier method for mixed Equality-Inequality 07 constrained problems with the flowchart.

OR

Q.5	(a)	Explain the iterative procedure of Fletcher – Reeves method.	07
	(b)	Explain the sequential programming method with algorithm.	07
