GUJARAT TECHNOLOGICAL UNIVERSITY

M.E. SEMESTER III-EXAMINATION (Remedial) - WINTER 2015 Date: 07/12/2015 Subject code: 730902

Subject Name: Fracture Mechanics

Time: 2:30 PM to 5:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Using Airy stress function, derive the general solution of the William's	07
		asymptotic series used for computing the crack tip stress field.	
	(b)	Derive the equation of stress intensity factor for Penny shaped crack.	07

- (b) Derive the equation of stress intensity factor for Penny shaped crack.
- 0.2 Derive the near tip stress field equations for mode-I using Westergaard 07 **(a)** approach.
 - (b) Determine the mode-I crack opening displacement by assuming Westergaard 07 stress function.

OR

- (b) Derive the near tip stress field equations for a plate with central crack and 07 subjected to shear loading using Westergaard approach.
- Derive the equation for plastic zone size using Dugdale strip yield model. 07 Q.3 (a)
 - Compare Inglish and Griffith solution for a cracked body. **(b)** 07

OR

- What is energy release rate and how it is related to potential energy for constant **Q.3** (a) 07 load and constant displacement conditions. Discuss crack growth resistance curves for ductile and brittle materials. 07 **(b)**
- **O.4 (a)** Explain with neat sketch the different regions formed ahead of the crack tip 07 during the crack growth in ductile material.
 - What is the relationship between the J-integral and essential work of fracture 07 **(b)** for the case of DENT and SENT geometries?

OR

Derive the *J*- integral formula. **O.4** 07 **(a)** Explain essential work of fracture concept. 07 **(b)** Discuss HRR stress singularity. Q.5 (a) (b) Explain the experimental procedure for measuring the J integral from laboratory 07 tests.

OR

Q.5	(a)	Discuss the characteristic growth curve of a fatigue crack with Paris law.	07
	(b)	Explain MTS criterion for crack propagation.	07
