Seat No Enrollient No	Seat No.:	Enrolment No
-----------------------	-----------	--------------

Subject Name: ELEMENTS OF ELECTRICAL ENGINEERING

Subject Code:X10901

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER-I- EXAMINATION - SUMMER 2016

Date:02/06/2016

 Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. (a) Explain the similarity and dissimilarity between electric circuit and magnetic circuit. (b) Two metal plates of area 100 cm² are separated by a dielectric of 2 mm having a relative permittivity of 5. When a dc voltage of 500 V is applies across the capacitor plates. Find (i) Capacitance (ii) Charge on the capacitor (iii) Electric field strength (iv) Electric flux density Q.2 (a) Derive expression for star to delta conversion of resistive network. (b) Explain charging process of a capacitor. Q.3 (a) Explain the phenomena of A.C. through pure capacitor with circuit and vector diagram. Also prove that active power consumption is zero. (b) If the waveform of a voltage has a form factor of 1.15 and peak factor of 1.5 and if the maximum value of a voltage of 4500 volt, Calculate the average and rms value of the voltage. Q.4 (a) Define RMS value. Derive expression for RMS value of a.c. current. (b) A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The Voltage across the capacitance and (iii) The Q-factor of the circuit. Q.5 (a) Explain the method of measuring 3-phase power by two wattmeter method. (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (ii) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak fa	Time:02:30 PM to 05:00 PM Instructions:			Total Marks: 70	
 circuit. (b) Two metal plates of area 100 cm² are separated by a dielectric of 2 mm having a relative permittivity of 5. When a dc voltage of 500 V is applies across the capacitor plates. Find (i) Capacitance (ii) Charge on the capacitor (iii) Electric field strength (iv) Electric flux density Q.2 (a) Derive expression for star to delta conversion of resistive network. (b) Explain charging process of a capacitor. Q.3 (a) Explain the phenomena of A.C. through pure capacitor with circuit and vector diagram. Also prove that active power consumption is zero. (b) If the waveform of a voltage has a form factor of 1.15 and peak factor of 1.5 and if the maximum value of a voltage of 4500 volt, Calculate the average and rms value of the voltage. Q.4 (a) Define RMS value. Derive expression for RMS value of a.c. current. (b) A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The voltage across the capacitance and (iii) The Q-factor of the circuit. Q.5 (a) Explain the method of measuring 3-phase power by two wattmeter method. (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 			 Attempt any five questions. Make suitable assumptions wherever necessary. 		
 (b) Two metal plates of area 100 cm² are separated by a dielectric of 2 mm having a relative permittivity of 5. When a dc voltage of 500 V is applies across the capacitor plates. Find (i) Capacitance (ii) Charge on the capacitor (iii) Electric field strength (iv) Electric flux density Q.2 (a) Derive expression for star to delta conversion of resistive network. (b) Explain charging process of a capacitor. Q.3 (a) Explain the phenomena of A.C. through pure capacitor with circuit and vector diagram. Also prove that active power consumption is zero. (b) If the waveform of a voltage has a form factor of 1.15 and peak factor of 1.5 and if the maximum value of a voltage of 4500 volt, Calculate the average and rms value of the voltage. Q.4 (a) Define RMS value. Derive expression for RMS value of a.c. current. (b) A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The voltage across the capacitance and (iii) The Voltage across the capacitance and (iii) The Q-factor of the circuit. Q.5 (a) Explain the method of measuring 3-phase power by two wattmeter method. (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 	Q.1	(a)	Explain the similarity and dissimilarity between electric circuit and magnetic circuit.	07	
 (b) Explain charging process of a capacitor. Q.3 (a) Explain the phenomena of A.C. through pure capacitor with circuit and vector diagram. Also prove that active power consumption is zero. (b) If the waveform of a voltage has a form factor of 1.15 and peak factor of 1.5 and if the maximum value of a voltage of 4500 volt, Calculate the average and rms value of the voltage. Q.4 (a) Define RMS value. Derive expression for RMS value of a.c. current. (b) A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The voltage across the capacitance and (iii)The Q-factor of the circuit. Q.5 (a) Explain the method of measuring 3-phase power by two wattmeter method. (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 		(b)	Two metal plates of area 100 cm ² are separated by a dielectric of 2 mm having a relative permittivity of 5. When a dc voltage of 500 V is applies across the capacitor plates. Find (i) Capacitance (ii) Charge on the capacitor (iii) Electric field strength (iv) Electric flux density	07	
 diagram. Also prove that active power consumption is zero. (b) If the waveform of a voltage has a form factor of 1.15 and peak factor of 1.5 and if the maximum value of a voltage of 4500 volt, Calculate the average and rms value of the voltage. Q.4 (a) Define RMS value. Derive expression for RMS value of a.c. current. (b) A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The voltage across the capacitance and (iii) The Q-factor of the circuit. Q.5 (a) Explain the method of measuring 3-phase power by two wattmeter method. (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 	Q.2		<u> </u>	07 07	
 (b) If the waveform of a voltage has a form factor of 1.15 and peak factor of 1.5 and if the maximum value of a voltage of 4500 volt, Calculate the average and rms value of the voltage. Q.4 (a) Define RMS value. Derive expression for RMS value of a.c. current. (b) A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The voltage across the capacitance and (iii) The Q-factor of the circuit. Q.5 (a) Explain the method of measuring 3-phase power by two wattmeter method. (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 	Q.3	(a)	Explain the phenomena of A.C. through pure capacitor with circuit and vector diagram. Also prove that active power consumption is zero.	07	
 (b) A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The voltage across the capacitance and (iii) The Q-factor of the circuit. Q.5 (a) Explain the method of measuring 3-phase power by two wattmeter method. (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 		(b)	If the waveform of a voltage has a form factor of 1.15 and peak factor of 1.5 and if the maximum value of a voltage of 4500 volt, Calculate the average and	07	
 (b) A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω and surrounding temperature 25 °C. Q.6 (a) Define following terms with respect to a.c. waveforms. (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 	Q.4		A circuit consists of a resistance of 4 Ω, inductance of 0.5 H and a variable capacitance in series across a 100 V, 50 Hz supply. Calculate: (i) The value of capacitance to produce resonance (ii) The voltage across the capacitance and	07 07	
 (i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor (vi) Power factor (vii) Average value (b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance. Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit. 	Q.5		A coil has resistance of 20 Ω when mean temperature is 20 °C and 30 Ω when mean temperature is 60 °C. Find mean temperature rise when resistance is 25 Ω	07 07	
(b) What is temperature co-efficient? Derive equation for the effect of temperature variation on resistance.Q.7 (a) What is resonance? Explain resonance condition in series R-L-C circuit.	Q.6	(a)	(i) Frequency (ii) Cycle (iii) Amplitude (iv) Form factor (v) Peak factor	07	
		(b)	What is temperature co-efficient? Derive equation for the effect of temperature	07	
	Q.7		1	07 07	