Enrolm	nent No.	
Linom	10111 1 10.	

1

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-II EXAMINATION – SUMMER 2016

Subject Name: DIGITAL LOGIC DESIGN DESIGN			Date:02/06/2016	
		Marks:	70	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Answer the following questions(any four) $(362.52)_8 = (\)_2 = (\)_{10}$ $(163.875)_{10} = (\)_2$ $(2FB.7C)_{16} = (\)_2 = (\)_{10}$ Multiply 1101 with 110 in binary		07
	(b)	Do as directed Subtract 27.50 from 68.75 using 12 bit 1's complement arithmetic. Subtract 507D.56 from 4AB.68 USING 16's complement method, if th numbers are base 16 numbers. Add 679.6 with 536.8 in 8421 code.	nese	07
Q.2	(a)	Simplify a function using Boolean algebra F(A,B,C,D) = A + [B+C'(AB+AC')']		03
		Simplify a function using K-Map		04
	(b)	F(K,L,M,N) = K'LM'+K'M'N+KLM'N'+LMN' Reduce using Tabulation Method F= π M(2,3,8,12,13) . d(10,14)		07
		OR		07
	(b)	Simplify a function using K-Map F = A'BC'D'E'+ABC'D'E'+A'BC'DE'+A'BCD'+A'B'CD'E+ ABCD'E'+ABCD'E+A'BC'DE		07
Q.3	(a)	Design a combinational circuit that multiplies a number by 5, input ded digit is represented by BCD. Show that output can be obtained from the lines without using any logic gates.		07
	(b)	Implement $F(A,B,C,D)=\sum (0, 1, 3, 4, 8, 9, 15)$ Using a suitable Multipluse D as input line.	exer,	07
Q.3	(a)	OR Explain ROM and PLA.		07
Q.5	(b)	How look ahead carry generator works? How is it advantageous with r to binary parallel Adder? Give its combinational logic and its integrate circuits.	-	07
Q.4	(a) (b)	Explain 4-bit Asynchronous Up/Down counter using J K Flip flop Achieve given sequence using 4-Bit synchronous counter. 0-2-4-6-8-10-12-14-0-2		07 07
		OR		
Q.4	(a) (b)	 Draw and explain 4-Bit synchronous counter. Make flip flop conversions. 1. J K Flip flop to D Flip flop 2. S R Flip flop to J K Flip flop 		07 07

Q.5	(a)	Explain memory unit.	07
	(b)	Describe process of inter register transfer.	07
		OR	
Q.5	(a)	Explain arithmetic micro operation.	07
	(b)	Explain the process of designing a simple computer.	07
