Seat No.:	Enrolment No.

Subject Code:X31102

Time:02:30 PM to 05:00 PM

Subject Name:Engineering Electromagnetics

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER-III EXAMINATION - SUMMER 2016

Date:30/05/2016

Total Marks: 70

Instructions:			
	2	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Points $A(r = 100, \theta = 90^{\circ}, \phi = 0^{\circ})$ and $B(r = 100, \theta = 90^{\circ}, \phi = 5^{\circ})$ are located on the surface of a 100 meter radius sphere. (a) What is their separation using a path on the spherical surface? (b) What is their separation using a straight line path?	07
	(b)	State and prove the Divergence theorem.	07
Q.2	(a)	Derive the expression for the Electric field intensity E due to the infinite line charge placed on the z-axis.	07
	(b)	Derive the poisson's equation from point form of gauss's law. Derive the laplace's equation and write the laplace's equation in Cartesian, cylindrical and spherical coordinate system.	07
	a >	OR	
	(b)	Write a Short Note: Maxwell's equation for electrostatic field.	07
Q.3	(a)	Explain the concept of potential gradient and derive the relationship between E and V	07
	(b)	Point charge of 15 nC each are symmetrically located at A $(4, 4, 0)$, B $(4, -4, 0)$, C $(-4, 4, 0)$ and D $(-4, -4, 0)$ and uniform line charge of 50 nC / m lies at x = 0 y = 8. (a) Find D at origin. (b) How much electric flux crosses the plane y = 0? (c) How much electric flux leaves the surface of a sphere of radius 5m centered at $(0, 6, 0)$?	07
		OR	
Q.3	(a) (b)	Give the statement of biot-savart law and explain its application. Two uniform line charges, $8 \text{ nC} / \text{m}$ each, are located at $x = 1$, $z = 2$ and at $x = -1$, $y = 2$ in free space. If the potential at origin is 100V , find V at P(4, 1, 3).	07 07
Q.4	(a)	Derive the electrostatic boundary condition for the Dielectric-Dielectric interface.	07
	(b)	Find $ H $ at p (2, 3, 5) in Cartesian coordinates if there is an infinitely long current filament passing through the origin and point C. The current of 50 A is directed from the origin to C, where the location of C is (a) (0, 0, 1) (b) (0, 1, 0) OR	07
Q.4	(a) (b)	State and explain uniqueness theorem. Verify the stoke's theorem for the field $\overline{H}=6xy\ a_x-3y^2\ a_y$ and the rectangular path around the region $2\leq x\leq 5$, $-1\leq y\leq 1$, $z=0$ let the positive direction of ds be a_z .	07 07
Q.5	(a)	What is poynting vector? Explain the physical interpretation and significance of it?	07
	(b)	A point charge $Q_A=1\mu$ C is located at A (0, 0, 1) and $Q_B=-1\mu$ C is located at B (0, 0, -1). Find E_r , E_θ , E_φ at p (1, 2, 3).	07

- Q.5 (a) Derive the wave equation for propagation of wave in the perfect dielectric 07 media.
 - (b) Find the volume defined by $4 < \rho < 6$, $30^{\circ} < \phi < 60^{\circ}$, 2 < z < 5. Also find what is the length of the longest straight line that lies entirely within the volume.
