Seat	No.:	Enrolment No	
Sub Tin	pject ne:1(ructio 1. 2. 3.	GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-VI. EXAMINATION – SUMMER 2016 Code:X60604 Date:06/05/2016 Name:Structural Design-I 0:30 AM TO 01:00 PM Total Marks: 7 ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Use of IS 800:2007, IS 875 Part I, II, II, SP-6 and Steel Table is permitted. Consider fy = 250 N/mm² and fu = 410 N/mm² for steel.	
Q.1	(a)	Differentiate between Limit State Method and Working Stress Method of	07
	(b)	Design. Explain advantages and disadvantages of using steel structures and RCC Structures.	07
Q.2	(a) (b)	Draw neat sketches of beam to column stiffened and un-stiffened connection. Explain concept of Plastic design method. Give advantages of plastic design method. OR	07 07
	(b)	A beam ISMB 450 transfers a factored load of 400 kN to a column ISHB 350. Using Fe 410 grade steel, design the stiffened seat connection.	07
Q.3		Design a simply supported welded plate girder of span 24 m to carry u.d.l. of 35 kN/m over entire span. Provide end bearing stiffners. Assume suitable data if necessary. (Connection design is not required) OR	14
Q.3		Design a simply supported gantry girder to carry one electric overhead travelling crane. Considering following data: Span of gantry girder = 7.5 m Span of crane girder = 14 m Crane capacity = 220 kN Self weight of crane girder excluding trolley = 200 kN Self weight of trolley = 30 kN Minimum hook approach = 1.4 m Distance between wheels = 3.2 m Self weight of rails = 0.3 kN/m	14
Q.4		Design the foot bridge for the following data: Type of truss: N- Type lattice girder Span: 24 m Width of walk way: 3.5 m, Flooring: RCC slab 100 mm with floor finish 1.0 kN/m² Live Load: 4 kN/m² Design Cross Girders and any one member of Top Chord.	14
		Assume Suitable data if required. OR	

Considering non-sway column in a building frame with flexible joints of 3.5 m

height and subjected to the factored axial load = 1200 kN at an eccentricity of 30 mm. Design a suitable column, considering fy = 250 N/mm^2 . The column is

14

Q.4

fixed at bottom and hinged at top.

Q.5 Calculate nodal loads due to dead load, live load and wind load for a truss situated in Ahmedabad. Length of truss = 16 m, Spacing of truss = 4 m c/c. Rise of truss = 4 m. Consider medium permeability and use A.C. Sheets. Height of eaves level is 16 m. Assume suitable data if necessary. Design any one member of Main Tie.

OR

Q.5 (a) A portal frame consists of two hinge supported column of 5 m height separated by a beam of span 7 m and loaded up to collapse with downward uniformly distributed load of 20 kN/m and lateral point load of 100 kN at beam column junction . Find the plastic moment of resistance if it is of uniform strength.
