Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-VII EXAMINATION – SUMMER 2016

Subject Code:X70902	Date:12/0	Date:12/05/2016	
Subject Name: Interconn Time:02:30 PM to 05:00 I Instructions: 1. Attempt all questions 2. Make suitable assum 3. Figures to the right in Q.1	PM s. ptions wherever necessary.	Total Ma	rks: 70
(a) What is load flow? Explain why do we need load flow study?			(4)
(b) Define steady state, transient and dynamic stability			(4)
(c) With the help of a neat diagram explain flyball speed governing mechanism			(6)
Q.2 (a) Form Y _{BUS} for the system who Line, bus to bus 1-2 1-3 2-3 2-4 3-4 (b) Starting from the first principl (b) What is difference between eco in brief unit commitment usin	R, pu 0.05 0.10 0.15 0.10 0.05 es derive swing equation OR onomic load dispatch and u	-	(7) (7) (7)
Q.3 (a) Explain Gauss-Siedel method of load flow with the help of flow-chart (b) Give classification of different types of buses in power system OR			(9) (5)
Q.3	<u>on</u>		
(a) Derive the expression for B-loss coefficients for a two generator system. State the assumptions made			(9)
(b) In a two plant system consisting supplied from plant 1 to the log generation for each plant and to 25/MWh. The incremental fue $dF_1/dP_1 = 0.02P_1 + 16.00T_1$ $dF_2/dP_2 = 0.04P_2 + 20.00T_2$	ad, a transmission loss of 10 the power received by the lo el costs of two plants are giv Rs/MWh) MW is incurred. Find the bad when the system λ is R	

 $dF_2/dP_2 = 0.04P_2 + 20.00 \text{ Rs/MWh}$

Q.4	
(a) Explain the steps involved in formulation of Z_{BUS} matrix	
(b) Discuss various methods of voltage control in brief	(5)
OR	
Q.4	
(a) Explain flat frequency control and selective frequency control	(7)
(b) Derive the criteria for most economic dispatch when transmission losses are considered	(7)
Q.5	
(a) A single generator is feeding power to an infinite bus through a single transmission	(7)
line. A three phase fault occurs near the generator terminals which reduces the	~ /
power transfer to zero. When the fault is cleared the original conditions are restored.	
Derive the formula for critical clearing angle and critical clearing time	
(b) A generator and transformer having combined transient reactance $X'd = j0.3$ pu	(7)
is connected to infinite bus through two parallel lines each having reactance of j0.4	
pu. The machine is delivering 1.0 per unit power. The output current from the	
generator is $1.012 \perp 8.729^{\circ}$. Calculate the critical clearing angle and critical	
clearing time if a fault occurs near the generator terminal. Take $H = 5 \text{ MJ/MVA}$	
and $f = 60 \text{ Hz}$	
OR	
Q.5	
	$\langle \mathbf{O} \rangle$

(a) Explain the numerical solution of swing equation	(8)
(b) Discuss the methods of improving steady state stability	(6)