Enrolment No.	
---------------	--

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-II EXAMINATION – WINTER 2015

0				
Tir	Subject Name: Mathematics-II Time: 02:30pm to 05:30pm Total Mark Instructions:			
	1. 2. 3.	I I I I I I I I I I I I I I I I I I I		
Q.1	(a)	Solve : $y''' + 2y'' + y' = \cos^2 x$	07	
	(b)	Solve the equation $y'' + y = x \sin x$ using the method of variation of parameters.	07	
Q.2	(a)	Solve: $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$, given that $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0 \& z = 0$, when	07	
		y is an odd multiple of $\frac{\pi}{2}$.		
	(b)	(i) Prove that $\overline{/(n+1)} = n!$, where <i>n</i> is positive integer. (ii) Prove that $\beta(m,n) = \beta(n,m)$.	03 04	
	(b)	OR Evaluate : $\int_{0}^{1} \frac{x^{2}}{(1-x^{4})^{\frac{1}{2}}} dx \cdot \int_{0}^{1} \frac{x^{2}}{(1+x^{4})^{\frac{1}{2}}} dx$	07	
Q.3	(a)	Find the Fourier series of $f(x) = e^{-x}, -l < x < l$.	07	
	(b)	Express sin x as a cosine series in $0 < x < \pi$. OR	07	
Q.3	(a)	Find the Fourier series for the function given by $f(x) = \begin{cases} \pi x, 0 \le x \le 1 \\ \pi (2-x), 1 \le x \le 2. \end{cases}$	07	
	(b)	Find the Fourier series for x^2 in the interval $-\pi < x < \pi$.	07	
Q.4	(a)	Prove that $L(sinat) = \frac{a}{s^2 + a^2}$ and $L(t^n) = \frac{n!}{s^{n+1}}$.	07	
	(b)	Using convolution theorem , find $L^{-1}\left(\frac{1}{(s^2+a^2)^2}\right)$.	07	
		OR		
Q.4	(a)	(i) Find $L\left(\frac{1-\cos t}{t}\right)$.	03	
		(ii) Find the Laplace transform of $f(t) = \begin{cases} 0, 0 < t < \pi \\ \sin t, t > \pi \end{cases}$.	04	
	(b)	Find $L^{-1}\left(\frac{(5s+3)}{(s^2+2s+5)(s-1)}\right)$.	07	

1

Q.5 (a) The tightly stretched string with fixed and point x = 0 & x = l is initially in a position given by $u(x,0) = u_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it released from rest from this position, find the displacement u(x,t) and any time & at any distance from the end x = 0.

(b) Find
$$Z^{-1}\left[\frac{z-6}{z^2+5z+6}\right]$$
.

OR

Q.5 (a) Solve:
$$2\frac{\partial u}{\partial x} = \frac{\partial u}{\partial t} + u$$
, subject to the condition $u(x,0) = 4e^{-3x}$ 07

(b) (i) Solve:
$$\frac{\beta(m, n+1)}{n} = \frac{\beta(m+1, n)}{m} = \frac{\beta(m, n)}{m+n}$$
 04

(ii) Solve the IVP :
$$y'' + y' - 2y = 0$$
 where $y(0) = 4 \& y'(0) = -5$. 03
