Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-II EXAMINATION – WINTER 2015

Subject Code: X21102 Date:28/12/2 Subject Name: Digital Logic Design			015	
Tir	Time: 02:30pm to 05:00pm Total Marks			
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Design a combinational circuit that converts 4 bit Binary code to 4 bit Gray code using EX-OR gates.	07	
	b)	1. Perform the subtraction using 10's Complement method: $3570 - 2100$ 2. Simplify the Boolean function to minimum number of literals: $XY + \overline{XZ} + YZ$	03 02	
		3. Find the Complement of functions: $F_{1} = \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z}$ $F_{2} = X(\overline{Y} \overline{Z} + YZ)$	02	
Q.2	(a)	Do as directed: (a) $(1010.011)_2 = ()_{10}$ (b) $(2AC5.D)_{16} = ()_{2}$ (c) $(623.77)_8 = ()_{16}$ (d) Find the 2's Complement number of 1010101. (e) $(225.225)_{10} = ()_{2}$ (f) State the duality principle. (g) $(11010)_2 - (1101)_2 = ()_{2}$	07	
	(b)	Prove with figure that NAND and NOR are Universal Gates. OR	07	
	(b)	Implement and explain 4 * 16 Decoder using five 2 * 4 Decoder circuit.	07	
Q.3	(a) (b)	Simplify the following Boolean function in (a) sum of products (b) Product of sums and implement it by using Universal Gates. F (A, B, C, D) = $\sum (0, 1, 2, 5, 8, 9, 10)$ Implement the Boolean function by using 8 * 1 multiplexer as well as NOT gate F(W, X, Y, Z) = $\sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$	07 07	
Q.3	(a)	OR Determine the prime implicants of the function using tabulation method	07	
	(b)	$F(W, X, Y, Z) = \sum (1, 4, 6, 7, 8, 9, 10, 11, 15)$ Explain Random access memory in detail.	07	
Q.4	(a) (b)	Construct and explain mod-6 synchronous counter using JK flip flop. List types of shift register and explain in brief. OR	07 07	
Q.4	(a) (b)	Design BCD ripple counter using Toggle flip flop. Convert D flip flop to JK flip flop as well as JK flip flop to D flip flop and explain it in brief.	07 07	
Q.5	(a) (b)	Define: Integrated circuit and briefly explain SSI, MSI, LSI and VLSI Give classification of Logic families and compare CMOS and TTL families. OR	07	

1

Q.5	(a)	What is race around condition? Explain the Master slave JK Flip flop.	

(b) Explain in brief: Arithmetic logic unit

07 07