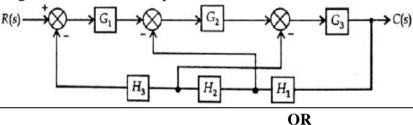
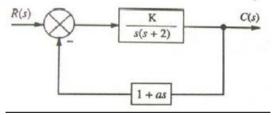
GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC -III-EXAMINATION - Winter- 2015


Subject Code: X30903 Date:23/12/2015

Subject Name: Control Theory


Time: 10.30am-01.00pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Derive transfer function for an armature controlled d.c.motor.
 - **(b)** Explain force voltage analogy with suitable example.
- Q.2 (a) Give the advantage of signal flow graph method over block diagram reduction method.
 - **(b)** Determine close loop transfer function of the system shown below using block diagram reduction techniques.

(b) Determine the value of 'K' and 'a' such that the system has a damping ratio of 0.7 and an undamped natural frequency of 4 rad/sec for the system shown below.

- Q.3 (a) Write notes on "Phase Lag Lead compensation"
 - (b) Explain: (I) Gain Margin (II) Phase Margin (III) Gain crossover frequency (IV) Phase crossover frequency

OR

- Q.3 (a) Explain the fact that for any system, the set of state variables are non-unique.
 - (b) Comment on the stability of a closed loop system whose open-loop transfer function is, as given below, using Nyquist stability criterion. Draw Nyquist contour and corresponding G(s)H(s) contour.

 $\frac{10}{(1+0.1S)(1+0.5S)}$

- **Q.4** (a) Explain about integral action and derivative action on system performance. Can integral action be used alone?
 - (b) Give one example of an open loop stable system and open loop unstable system. Explain 07 about stability of the system.

07

07

07

07

07

07

07

07

07

07

- Explain about time constant of first order and second order system. **07 Q.4** (b) Explain Bode plot with any suitable example wherein the system has one zero and three **07** poles. Compare the time domain and frequency domain system. **07** Q.5 (a) **07** Derive the transmission parameters. OR (a) Using Routh's criterion check the stability of a system whose characteristic equation is given Q.5 **07** $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$ **07**
 - **(b)** Write note on steady state error and error constants. ******