Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-IV EXAMINATION – WINTER 2015

Subject Code:X40904 Subject Name: Theory of Electromagnetics	Date:29/12/2015	
Subject Name: Theory of Electromagnetics Time: 02:30pm to 05:00pm Instructions:	Total Marks: 70	
 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1 (a) A vector is given in cartesian system by $F = F_x a_x + F_y a_y + F_z a_z$. Find its spherical equivalent	cylindrical and (7)	
(b) Let $E = 3a_y + 4a_z$ and $F = 4a_x - 10a_y + 5a_z$ (i) find component of E alon a unit vector perpendicular to the plane of vectors E and F	g F. (ii) Determine (7)	
Q.2(a) Derive the expression for electric field intensity at a point on the z-axis	due to infinite sheet (7)	
which lies in z = 0 plane(b) Derive point form of continuity equationOR	(7)	
(b) State and explain Gauss' law. Apply Gauss' law to find the charge enc cylinder of radius ρ and height L. Assume that line charge of ρ_L C/m p centre of the cylinder		
Q.3 (a) Find the force on a point charge of 5 μ C located at (0,0,5) due to charg	e of 500 π µC (8)	
 (b) Two uniform line charges of density p_L = 4 nC/m, lie in x = 0 plane at y 		
E at (4,0,z) OR		
 Q.3 (a) Explain the concept of divergence. Prove that ∇·D = ρ_V and hence expl theorem 	ain divergence (8)	
(b) Write a short note on electric dipole	(6)	
Q.4 (a) Define potential and potential difference. Prove that E = -grad V (b) Explain conductor properties and boundary conditions OR	(8) (6)	
 Q.4 (a) Explain dielectric-dielectric boundary conditions. Also derive the relate electric flux densities in both the dielectrics (b) Discuss Poisson's and Laplace's equations 	ionship between (8) (6)	

Q.5 (a) What is curl? Prove that $\nabla \times H = J$	(8)
(b) Explain Ampere's circuital law and Stoke's theorem in brief	(6)
OR	
Q.5	
(a) Discuss Maxwell's equations in integral form and point form	(8)
(b) Explain the following in brief (i) Diamagnetism (ii) Paramagnetism (iii) Ferromagnetism	(6)