
GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-VII EXAMINATION – WINTER 2015

Subject Code:X70606Date:04/12/2015Subject Name: Advanced Structural Analysis (Department elective I)Time: 10:30pm to 1:00pmInstructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	3.	. Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain the process of discretization in finite element method. Derive the shape function for the constant strain triangle.	07 07
Q.2	(a) (b)	Explain the concept of symmetry and antisymmetry with examples. Write an algorithm for the analysis of simply supported beam by stiffness matrix method.	07 07
	(b)	OR Elaborate the incremental analysis with iteration technique.	07
Q.3	(a)	Analyse the continuous beam shown in figure (1) and find the assembled stiffness matrix.	07
	(b)	Using stiffness approach draw shear force and bending moment diagram for figure (1).	07
		OR	
Q.3	(a) (b)	Derive the member stiffness matrix for the plane frame. Find the displacement and rotation at 'B' for the beam as shown in figure (2) by stiffness matrix method. $EI = 10000 \text{ kN.m}^2$.	07 07
Q.4	(a)	Find the joint displacement at 'B' for the plane frame as shown in figure (3) by stiffness matrix method. $I_{zz} = 1.33 \times 10^{-4} \text{ m}^4$, $A = 0.04 \text{ m}^2$ and $E = 200 \text{ GPa}$. EI and EA are same for both the members.	10
	(b)	Explain the material and geometric non linearity with examples. OR	04
Q.4		Analyse the truss and find the forces in the members as shown in figure (4) by stiffness matrix method. Here support 'B' settles down by 5 mm and temperature in member 'BD' increased by 10° C. Adopt $\alpha = 12 \times 10^{-6}$ °C and AE = 7000 kN. Length of member CD is 3m, AD is 4m and BD is 5m.	14
Q.5		Determine the joint displacement for the grid as shown in figure (5) by stiffness matrix method. The load of 100 kN is acting at the centre of member AB. OR	14
Q.5	(a) (b)	Explain the convergence requirement of the shape function. Using the generalized coordinate approach, find the shape function for two noded truss element.	07 07
